

(Time: 3 hours)

Max. Marks: 80

06

08

06

- N.B. (1) Question No. 1 is compulsory.
 - (2) Answer any three questions from Q.2 to Q.6.
 - (3) Use of Statistical Tables permitted.
 - (4) Figures to the right indicate full marks.
- Q.1 (a) Find all basic, feasible and degenerate solutions for the following equations: $2x_1 + 6x_2 + 2x_3 + x_4 = 3$; $6x_1 + 4x_2 + 4x_3 + 6x_4 = 2$
 - (b) Integrate the function $f(z) = x^2 + i xy$ from A (1,1) to B (2,4) along the curve $x = t, y = t^2$.
 - (c) A machine is set to produce metal plates of thickness 1.5 cms with S.D. of 0.2 cms. A sample of 100 plates produced by the machine gave an average thickness of 1.52 05 cms. Is the machine fulfilling the purpose? Test at 1% Level of Significance.
 - (d) The sum of the Eigen values of a 3×3 matrix is 6 and the product of the Eigen values is also 6. If one of the Eigen value is one, find the other two Eigen values.
- Q.2 (a) Evaluate $\oint \frac{\sin^6 z}{(z^{-\pi}/6)^n} dz$ where c is the circle |z| = 1 for n = 1, n = 3.
 - (b) Solve the following LPP using Simplex Method

Maximize $z = 3x_1 + 5x_2$ subject to

$$3x_1 + 2x_2 \le 18,$$

 $x_1 \le 4,$
 $x_2 \le 6,$
 $x_1, x_2 \ge 0$

(c) The following data is collected on two characters. Based on this, can you say that there is no relation between smoking and literacy? Use Chi-square test at 5% Level of significance.

Smokers Non-smokers
Literates 40 35
Iliterates 35 85

Q.3 (a) Find the Eigen values and Eigen vectors of the following matrix.

$$A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$$

- (b) The incomes of a group of 10,000 persons were found to be normally distributed with mean of rs. 750 and Standard deviation of rs. 50. What is the lowest income of richest 06 250?
- (c) Obtain Taylor's and Laurent's expansions of $f(z) = \frac{z-1}{z^2-2z-3}$ indicating region of convergence.

Paper / Subject Code: 40501 / Applied Mathematics-IV

A man buys 100 electric bulbs of each of two well-known makes taken at random from stock for testing purpose. He finds that 'make A' has a mean life of 1300 hrs with a S.D. of 82 hours and 'make B' has a mean life of 1248 hours with S.D. of 93 hours. Discuss the significance of these results.

Using the Residue theorem, Evaluate

06

(i) Out of 1000 families with 4 children each, how many would you expect to have (a) at least one boy (b) at most 2 girls.

04+04

(ii) Find the Moment Generating Function of Binomial Distribution and hence find its mean.

Q.5 (a) Check whether the following matrix is Derogatory or Non-Derogatory:

The means of two random samples of sizes 9 and 7 are 196.42 and 198.82 respectively. The sum of the squares of the deviations from the means are 26.94 and 18.73 respectively. Can the samples be regarded to have been drawn from the same normal population?

Use the dual simplex method to solve the following L.P.P.

08

Minimise $z = x_1 + x_2$ subject to

 $2 x_1 + x_2 \ge 2 \\
-x_1 - x_2 \ge 1$ $x_1, x_2 \geq 0$

06

Q.6 (a) Show that the matrix A satisfies Cayley-Hamilton theorem and hence find A^{-1} .

Where $A = \begin{bmatrix} 0 & 2 & 0 \\ -1 & 0 & 2 \end{bmatrix}$

06

A random variable X has the probability distribution $P(X=x)=\frac{1}{8}3c_x$, x=0,12,3. Find mean and variance.

Using Kuhn-Tucker conditions, solve the following NLPP

Maximize $z = 10x_1 + 10x_2 - x_1^2 - x_2^2$ subject to

08

 $-x_1 + x_2 \le 5$ $x_1, x_2 \geq 0$

Paper / Subject Code: 40502 / Analysis of Algorithms

SESEM-IV-CHUICEBASE-COMP_13/01/2019 **Duration: 3 Hrs** Maximum Marks: 80 Note: 1) Question No 1 is compulsory. 2) Solve any three questions out of remaining five questions. Q.1)Solve any 4 1) Derive the complexity of quick sort for best case and worst case. What is asymptotic analysis? Define Big O, Omega and Theta notations. Write an algorithm to find all pairs shortest path using dynamic 3) programming. Write a note on "Optimal Storage on Tapes". 4) 5) Define master theorem. Solve the following using master method. $T(n) = 8T(n/2) + n^2$ Write an algorithm for finding minimum and maximum using Q.2. 10 divide and conquer, Also derive its complexity. Write Kruskal's algorithm and show its working by taking suitable B) 10 example of graph with 5 vertices. Q.3. A) Solve fractional knapsack problem for the following. 10 n=6, p=(18, 5, 9, 10, 12, 7) <math>w=(7, 2, 3, 5, 3, 2)Write an algorithm for Knuth Morris Pratt (KMP) pattern matching. B) 10 A) Write an algorithm to solve N Queens problem. Show its working Q.4. 10 for N = 4. Write an algorithm to solve sum of subset problem and solve the 10 following problem, n=4, $w=\{4, 5, 8, 9\}$, required sum = 9. Prove that Vertex Cover problem is NP Complete. 10 Find the longest common subsequence for the following two 10 strings. X=ABACABB Y= BABCAB Write short note on any 2. 20 (a) Assembly Line Scheduling (b) Job Sequencing with Deadlines (c) 15 Puzzle Problem (d) P, NP and NPC Classes

Paper / Subject Code: 40503 / Computer Organization and Architecture SE | SEM - TV | Choice base | Comp | 17th may 2019

(3Hrs)

Max Marks: 80 NB: 1. Question No.1 Compulsory. 2. Solve any THREE from Q.2 to Q.6 3. Assume suitable data whenever necessary with justification. Q1. Answer any FOUR questions (A) Explain Instruction and Instruction Cycle. (05)(B) Differentiate between Memory Mapped IO and IO Mapped IO. (05) (C) Give different instruction formats. (05)(D) Explain Memory Interleaving Techniques. (05)Explain Superscalar Architecture (E) (05)Q2. (A) Explain Branch Predication Logic and delayed branch. (10)A program having 10 instructions (without Branch and Call instructions) is (10) executed on non-pipeline and pipeline processors. All instructions are of same length and having 4 pipeline stages and time required to each stage is 1nsec. i) Calculate time required to execute the program on Non-pipeline and Pipeline processor. ii) Calculate Speedup. Explain different technique for design of control unit of computer. Q3. (A) (10)(B) What is Microprogram? Write microprogram for following operations. (10)i) ADD R1, M, Register R1 and Memory location M are added and result store at Register R1. ii) MUL R1, R2 Register R1 and Register R2 are multiplied and result store at Register R1. Q4. (A) Explain Bus Contention and different method to resolve it. (10)(B) Explain different data transfer technique. (10)Q5. (A) Explain Booth's Multiplication algorithm and Perform (17)₁₀ X (5)₁₀. (10)(B) Consider a cache memory of 16 words. Each block consists of 4 words. Size of (10)the main memory is 256 bytes. Draw associative mapping and calculate TAG, and WORD size. Q6. (A) Explain different type of pipeline hazards. (10)(B) Draw and explain floating point addition subtraction algorithm. (10)

Sem IV (Computer) Choice Bosed Q.P.Code: 21849 23/05/2019 Caper Subject code: 40504 Computer Graphics [3 Hours] [Total Marks: 80]

Please check whether you have got the right question paper.

Pleas	e check whether you have got the right question paper.	
N.B:	(1) Question No.1 is compulsory	
	(2) Attempt any three of remaining five questions	
	(3) Assume any suitable data if necessary and justify the same	
Q1	a) What is aliasing and antialiasing?	5
1	b) Write the flood fill approach for 8 connected method.	5
1	c) Explain the concept of halftoning with example.	5
	d) Prove that two successive rotations are additive	. 5
		10
Q 2	a) Plot the points for midpoint ellipse with rx=3 and ry=5 for region 1.	10
	b) Explain the steps for 2D rotation about arbitrary point.	10
0.3	a) Explain Liang Barsky line clipping algorithm. Apply the algorithm to the line	1e
Q3	a) Explain Liang Barsky line clipping algorithm. Apply the algorithm to the mi with coordinates (30,60) and (60,25) against the window(xmin,ymin)=(10,10)) 10
	and (xmax,ymax)=(50,50).	
	b) Explain Weiler Artherton polygon clipping algorithm with suitable example	e. 10
Q 4	a) What is window and viewport? Derive the matrix for viewport transformati	ion. 10
	b) Explain what is meant by Bezier curve? State the various properties of Bezi	er 10
	curve.	
	a) What is meant by parallel and perspective projection? Derive matrix for	
Q 5	a) What is meant by parallel and perspective projection? Derive matrix for perspective projection.	10
1	b) Explain Z Buffer algorithm for hidden surface removal.	10
Q6	Write short notes on(any two)	
	a) Koch curve	20
30%	b) Sweep representation	20
	c) Gouraud and phong shading	
	d) Inside Outside test	

Paper / Subject Code: 40505 / Operating System

SE SEM-IV - CHOICE BAJE - COMP - 29/05/19.

Marks: 80	
	5
	5
	5
ithms.	5 5
	10
iling	10
mina whother or	10
mine whether or	

-	Allocation	Max	Available
	A B C D	A B C D	A B C D
P0	3 0 1 4	5 1 1 7	0 3 0 1
P1	2 2 1 0	3 2 1 1	
P2	3 1 2 1	3 3 2 1	
P3	0 5 1 0	4 6 1 2	
P4	4 2 1 2	6 3 2 5	

not system is in safe state. If yes determine the safe sequence.

4-a	Calculate number of page faults and page hits for the page replacement policies FIFO, Optimal and LRU for given reference string 6, 0, 5, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 5, 2, 0, 5, 6, 0, 5 (assuming the forms of th	10
h	three frame size). Explain synchronization problem in detail. How counting semaphore can be used to solve readers writers problem.	10
5-a	Given memory partitions of 150k,500k,200k,300k,550k(in order) how would each of the first fit, best fit and worst fit algorithm places the processes of 220k,430k,110k,425k(in order). Evaluate	10

Suppose that a disk drive has 5000 cylinders, numbered 0 to 4999. The drive is currently serving a request at cylinder 143, and the previous request was at cylinder 125. The queue of pending requests in FIFO is ordered as 80, 1470, 913, 1777, 948, 1022, 1750,130. What is the total distance that the disk arm moves for following by applying following algorithms?

1. FCFS 2. SSTF 3. LOOK 4. SCAN

20

Q-6 Write short notes on: (any two):

- (a) Linux Virtual File system
- (b) Process State transition
- (c) System Calls

67643

b