K. J. SOMAIYA INSTITUTE OF MANAGEMENT STUDIES AND RESEARCH, Vidyavihar, Mumbai- 400077
 Program: MCA, Sem-I (2016-19Batch)
 Subject: Mathematical Foundation in Computer Science
 (End Term Exam)

Maximum Marks: 50
Duration: 3 hrs.
Date: $\mathbf{2 1}^{\text {st }}$ November
2016

Instructions

1. Attempt any five questions

QUESTION 1

(10)
a. Prove that for any positive integer ' n ' the number ' $n\left(n^{2}+5\right)$ is an integer multiple of 6 by mathematical induction
b. If I be the set of integers and if R be defined over I by "a $R b$ " iff "a-b is an even integer" ,a, b€ I, then show that the relation R is an equivalence relation

QUESTION 2

(10)
a. Determine whether the set of even integers with binary operation defined as $a^{*} \mathrm{~b}=(\mathrm{ab}) / 2$ is a semigroup, a monoid or neither. If it is a monoid, specify the identity. If it is a semigroup or a monoid determine whether it is commutative.
b. Check the validity of the following arguments.

If I play football, I cannot study.
Either I study or I pass DBMS
I played football.
Therefore, I passed DBMS.

QUESTION 3

(10)
a. Define degree of a vertex in an undirected graph. How many edges are there in a graph with ten vertices each of degree six?
b. State the Tower of Hanoi problem. Obtain its recurrence relation with suitable initial conditions. Solve the recurrence relation.

QUESTION 4

(10)
a. Draw the graph for following Adjacency list \& write Euler Circuit and Hamilton Circuit if exists.

A	B	C	E
B	A	D	F
C	A	D	G
D	B	C	H
E	A	F	G
F	B	E	H
G	C	E	H
H	D	F	G

b. Let the state transition table for a finite state machine be

	0	1
$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$
$\mathrm{~S}_{1}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$
$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{2}$
$\mathrm{~S}_{3}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
S 4	S 4	S 2

List values of the transition function f_{w} for (i) $\mathrm{w}=01011$, (ii) $\mathrm{w}=10101$.

QUESTION 5

(10)
a. Let $\mathrm{H}=\left[\begin{array}{ccc}\mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1}\end{array}\right]_{\text {be a parity check matrix. }}$

Determine the $(3,6)$ encoding function $\mathrm{e}_{\mathrm{H}}: \mathrm{B}^{3} \rightarrow \mathrm{~B}^{6}$. Decode the word 001111 relative to a maximum likelihood decoding function associated with e_{H}.
b. Find the solution of the recurrence relation $a_{n}=4 a_{n-1}+1$ with $a_{1}=4$ as initial condition.

QUESTION 6

(10)

by laws of logic

$$
(p \vee q) \leftrightarrow(p \Lambda q) .
$$

a. Pbtain the following Principal conjunctive normal form of $(p \leftrightarrow q) V \sim r$
(i) Conjunctive normal form of Disjunctive normal form of $\sim(p \vee q) \leftrightarrow(p \Lambda q)$
(ii)
(iii)
b. Let $\mathrm{V}=\left\{\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{a}, \mathrm{b}, \mathrm{c}\right\}, \mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and let \mapsto be the relation on V^{*} given by 1. $\mathrm{v}_{0} \mapsto \operatorname{vov}_{1} \quad 2 . \mathrm{Vov}_{1} \mapsto \mathrm{bbwv}_{2} \mathrm{v}_{0} \quad 3 . \mathrm{v}_{2} \mapsto \mathrm{a}, \mathrm{v}_{2} \mathrm{v}_{0} \mapsto \mathrm{ab}, \mathrm{v}_{1} \mapsto \mathrm{c}$ Consider the phase structure grammar $G=\left(\mathrm{V}, \mathrm{S}, \mathrm{v}_{0}, \mapsto\right)$.
(i) Derive the sentence xyz. Also draw the derivation tree.

