K. J. SOMAIYA INSTITUTE OF MANAGEMENT STUDIES AND RESEARCH, Vidyavihar, Mumbai- 400077

<u>Program: MCA, Sem-I (2016-19Batch)</u> Subject: Mathematical Foundation in Computer Science (End Term Exam)

Maximum Marks: 50 Duration: 3 hrs. 2016

Date: 21st November

Instructions

1. Attempt any five questions

QUESTION 1

(10)

- a. Prove that for any positive integer 'n' the number ' $n(n^2 + 5)$ is an integer multiple of 6 by mathematical induction
- b. If I be the set of integers and if R be defined over I by "a R b" iff "a-b is an even integer", a, b∈ I, then show that the relation R is an equivalence relation

QUESTION 2

(10)

- a. Determine whether the set of even integers with binary operation defined as a*b=(ab)/2 is a semigroup, a monoid or neither. If it is a monoid, specify the identity. If it is a semigroup or a monoid determine whether it is commutative.
- b. Check the validity of the following arguments.

If I play football, I cannot study. Either I study or I pass DBMS I played football. Therefore, I passed DBMS.

QUESTION 3

(10)

a. Define degree of a vertex in an undirected graph. How many edges are there in a graph with ten vertices each of degree six?

b. State the Tower of Hanoi problem. Obtain its recurrence relation with suitable initial conditions. Solve the recurrence relation.

QUESTION 4

(10)

a. Draw the graph for following Adjacency list & write Euler Circuit and Hamilton Circuit if exists.

А	В	С	Е
В	А	D	F
С	А	D	G
D	В	С	Н
Е	А	F	G
F	В	Е	Н
G	С	Е	Н
Н	D	F	G

b. Let the state transition table for a finite state machine be

	0	1	
S_0	S_0	S_1	
\mathbf{S}_1	S_1	S_2	
S_2	S ₃	S_2	
S ₃	S ₃	S_4	
S4	S4	S2	

List values of the transition function f_w for (i) w = 01011, (ii) w = 10101.

QUESTION 5

(10)

a. Let H = $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ be a parity check matrix.

Determine the (3, 6) encoding function $e_H: B^3 \rightarrow B^6$. Decode the word 001111 relative to a maximum likelihood decoding function associated with e_H.

b. Find the solution of the recurrence relation $a_n = 4a_{n-1} + 1$ with $a_1 = 4$ as initial condition.

<u>QUESTION</u>6 (10)

by laws of logic

- $(p V q) \leftrightarrow (p \Lambda q).$
- a. Obtain the following Principal conjunctive normal form of (p ↔q) V~r
 (i) Conjunctive normal form of Disjunctive normal form of ~(pVq) ↔(p Λ q)
- (ii)
- (iii)
- b. Let $V = \{v_0, v_1, v_2, a, b, c\}$, $S = \{a, b, c\}$ and let \mapsto be the relation on V* given by 1. $v_0 \mapsto vov_1$ 2. $Vov_1 \mapsto bbwv_2v_0$ 3. $v_2 \mapsto a, v_2v_0 \mapsto ab, v_1 \mapsto c$ Consider the phase structure grammar $G = (V, S, v_0, \mapsto)$.
- Derive the sentence xyz. Also draw the derivation tree. (i)
