University of Mumbai

Examination 2020 under cluster 5 (Lead College: APSIT)

Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021
to 20 ${ }^{\text {th }}$ January 2021
Program: Electronics and Telecommunication Engineering
Curriculum Scheme: Rev-2019
Examination: SE Semester III
Course Code: ECC304 and Course Name: Network Theory
Time: 2 Hour
Max. Marks: 80

Option B:	3 A
Option C:	2 A
Option D:	1 A
4.	Two inductively coupled coils are connected in series with the Aiding method, where $\mathrm{L} 1=6 \mathrm{mH}, \mathrm{L} 2=6 \mathrm{mH}$ and $\mathrm{M}=1 \mathrm{mH}$. Determine Total inductance of combination.
Option A:	12 mH
Option B:	13 mH
Option C:	14 mH
Option D:	10 mH
5.	Number of fundamental cutsets in following oriented graphs are
Option A:	3
Option B:	4
Option C:	5
Option D:	6
6.	Which of the following is the correct generalized KCL equation in graph theory?
Option A:	B. $Z_{b} \cdot B^{T} I_{1}=B . V s-B . Z_{b} I_{S}$
Option B:	$\mathrm{QY}_{\mathrm{b}} \mathrm{Q}^{\mathrm{T}} . \mathrm{V}_{\mathrm{t}}=\mathrm{Q} \mathrm{I}_{\mathrm{S}}-\mathrm{Q} \mathrm{Y}_{\mathrm{b}} \mathrm{Vs}$
Option C:	$\mathrm{Y}=\mathrm{QY}_{\mathrm{b}} \mathrm{Q}^{\mathrm{T}}$
Option D:	$\mathrm{QY}_{\mathrm{b}} \mathrm{Q}^{\mathrm{T}} . \mathrm{V}_{\mathrm{t}}=\mathrm{Q}\left(1-\mathrm{Q} \mathrm{Y}_{\mathrm{b}} \mathrm{Vs}\right)$
7.	Reduced Incidence matrix can be obtained by -----
Option A:	Eliminating a row of complete incidence matrix
Option B:	Multiplying complete incidence matrix with its transpose
Option C:	$\mid \mathrm{AA}^{\text {T }}$
Option D:	Obtaining tree
8.	Laplace transform of $\int_{0}^{t} f(t) . d t$ is equal to \qquad
Option A:	d F(S) / dS

Option B:	S F(S) - f 0)
Option C:	$\mathrm{F}(\mathrm{S}) / \mathrm{S}$
Option D:	$\mathrm{F}(\mathrm{S}+\mathrm{a})$
9.	Voltage source V is applied to series connected R and L networks. Equation of the current in the inductor is \qquad
Option A:	$\mathrm{i}(\mathrm{t})=\mathrm{V}\left(1-{ }^{\text {en }}\right) / \mathrm{R}$
Option B:	0
Option C:	$\mathrm{i}(\mathrm{t})=\mathrm{V}\left(1-e^{t}{ }^{\text {a }}\right.$) / R
Option D:	$\mathrm{i}(\mathrm{t})=\left({ }^{\left({ }^{t}{ }^{\text {e }} \text {) }\right.}\right.$
10.	In the following figure, a switch was opened for a long time and then closed at $\mathrm{t}=$ 0 . Determine $\mathrm{i}(\mathrm{t})$ at $\mathrm{t}=0^{+}$.
Option A:	1 A
Option B:	0.3 A
Option C:	0.7 A
Option D:	0 A
11.	For a series connected R-C network where $\mathrm{R}=100$ ohm and $\mathrm{C}=0.1 \mathrm{uF}$ connected in series. Time constant (τ) of a given circuit is \qquad
Option A:	10 uSec
Option B:	$1 / 100 \mathrm{Sec}$
Option C:	100 uSec
Option D:	1 uSec
12.	The driving point impedance function $Z(S)$ of a network has pole-zero location shown in figure, then $\mathrm{Z}(\mathrm{S})$ is given by --------.
Option A:	$\frac{H(S+2-3 j)(S+2+3 j)}{(S+1)}$
Option B:	$\frac{H(S-1)}{(S-2-3 j)(S-2+3 j)}$

Option C:	$\frac{H(S+1)}{(S+2-3 j)(S+2+3 j)}$
Option D:	$\frac{H(S+1)}{(S-2-3 j)(S-2+3 j)}$
13.	Polynomial $\mathrm{P}(\mathrm{S})=3 \mathrm{~S}^{3}+4 \mathrm{~S}^{2}+2 \mathrm{~S}+1$ is to be tested for Hurwitz. Elements in the first column of Routh's array are \qquad
Option A:	3, 4, 2, 1
Option B:	$3,4,-1.25,1$
Option C:	3, 4, -2, 1
Option D:	3, 4, 1.25, 1
14.	If inductor and capacitor are connected in series then equivalent impedance is ---
Option A:	L+ C
Option B:	LS + $1 / \mathrm{CS}$
Option C:	$\frac{L C+1}{C S}$
Option D:	(S + L) C
15.	Two two port networks are connected in parallel. The combination is to be represented as a single two-port network. The parameters obtained by adding individuals are ----.
Option A:	Z-parameter matrix
Option B:	h-parameter matrix
Option C:	ABCD-parameter matrix
Option D:	Y-parameter matrix
16.	A Two port network has the following equations. $\mathrm{I} 2=10 \mathrm{I}_{1}+2 \mathrm{~V}_{2}$ and $\mathrm{V}_{1}=5 \mathrm{I}_{1}+6 \mathrm{~V}_{2} \text { and }$ Hybrid parameters are $\mathrm{h}_{11}=------$ and $\mathrm{h}_{12}=-------$ respectively.
Option A:	6 and 5
Option B:	10 and 2
Option C:	5 and 6
Option D:	2 and 10
17.	A two port network is said to be symmetrical if ----
Option A:	Voltage to current ratio at one port is the same as the voltage to current ratio at another port with one port open circuited.
Option B:	Voltage gain and current gain are the same.
Option C:	Ratio of excitation at one port to response at another port is the same if excitation and response is interchanged.
Option D:	Current gain is same if ports are interchanged
18.	Driving point impedance function $\mathrm{Z}(\mathrm{S})=\frac{3}{S+4}$ is -----
Option A:	Series combination of two inductors
Option B:	Parallel combination of Inductor and Resistor
Option C:	Parallel combination of resistor and capacitor
Option D:	Series combination of two capacitors

19.	Realization of function using Cauer-II can be obtained by -----.
Option A:	Partial fraction expansion on $\mathrm{Y}(\mathrm{S})$
Option B:	Partial fraction expansion on $\mathrm{Z}(\mathrm{S})$
Option C:	Division operation on Z(S)
Option D:	Continued fraction expansion
20.	Function F(S $)=\frac{(S-3)}{S^{2}+9 S+20}$ is not positive real function because ---
Option A:	A zero is right half of S-Plane
Option B:	Poles are lies on left side of S plane
Option C:	A zero is at left half of S plane
Option D:	All poles lie on left half of S-Plane

Q2	Solve any Two Questions out of Three 10 marks each
A	Find Thevenin's equivalent across X and Y terminals for a given network.
B	Realize the following function using Cauer-I and Cauer-II form $Z(S)=\frac{s^{2}+4 S+3}{s^{2}+2 s}$
C	The switch is changed from position-1 to position-2 at $\mathrm{t}=0$. Steady state condition was reached before switching. Determine $i(t), \frac{d i(t)}{d t}$ and $\frac{d^{2} i(t)}{d t^{2}}$ at $\mathrm{t}=0+$.

University of Mumbai

Examination 2020 under cluster 5 (Lead College: APSIT)
Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program: Electronics and Telecommunication Engineering
Curriculum Scheme: Rev-2019
Examination: SE Semester III
Course Code: ECC304 and Course Name: Network Theory
Time: 2 hour
Max. Marks: 80

Question Number	Correct Option (Enter either ' \mathbf{A}^{\prime} or ' \mathbf{B} or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	B
Q2.	B
Q3.	D
Q4	C
Q5	A
Q6	B
Q7	A
Q8.	C
Q9.	C
Q10.	D
Q11.	A
Q12.	C
Q13.	D
Q14.	B
Q15.	D
Q16.	C
Q17.	C
Q18.	D
Q19.	
Q20.	

