University of Mumbai

Examination 2020 under cluster 3 (Lead College: FCRIT)

Examinations Commencing from $7^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program: F.E (All branches) (Choice Based) (R-2019-20 ' C^{\prime} 'Scheme)
Curriculum Scheme: Rev2019
Examination: FE Semester I
Course Code: FEC105 and Course Name: Basic Electrical Engineering
Time: 2 hours
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Superposition theorem is applicable to a linear network in determining
Option A:	Current responses
Option B:	Voltage responses
Option C:	Power responses
Option D:	Both Current and Voltage responses
2.	A resistance of 10 ohms is connected in series with two resistances each of 15 ohms arranged in parallel. What resistance must be shunted across the parallel combination so that the total current taken shall be 1.5 A with 20 V applied?
Option A:	10 ohms
Option B:	6 ohms
Option C:	5 ohms
Option D:	5.5ohms
3.	Find the maximum efficiency at Full Load of a 100 KVA , 1Phase transformer at upf. If the iron loss at half full load is 2 KW .
Option A:	94.15\%
Option B:	98.2\%
Option C:	95.2 \%
Option D:	96.15\%
4.	If voltage source having voltage $\mathbf{5 V}$ is connected in series with resistance $2 \mathbf{O h m s}$ then by source transformation it can be converted into equivalent current source as \qquad
Option A:	$10 \mathrm{~A}, 2 \Omega$ in series
Option B:	$10 \mathrm{~A}, 5 \Omega$ in parallel
Option C:	$2.5 \mathrm{~A}, 2 \Omega$ in series
Option D:	$2.5 \mathrm{~A}, 2 \Omega$ in parallel
5.	The losses in the transformer are and
Option A:	Eddy current loss and Copper loss
Option B:	Copper loss and Iron loss
Option C:	Hysteresis loss and eddy current loss
Option D:	Primary loss and secondary loss

6.	If the open circuit voltage is 10 V and load resistance is lohm. The maximum power transferred to the load is
Option A:	2.5 W
Option B:	25W
Option C:	100W
Option D:	50W
7.	When the three 50 ohms are star connected, then the power taken from the mains is
Option A:	2500W
Option B:	3200W
Option C:	1848W
Option D:	2000W
8.	A sinusoidal alternating current of 25 Hz frequency has its maximum value of 100A.How long will it take for the current to attain values of 20A starting from zero value?
Option A:	1.28 ms
Option B:	1.44 ms
Option C:	1 ms
Option D:	2 ms
9.	If a star network with resistance values $R_{A N}=\mathbf{3 \Omega} R_{B N}=\mathbf{8 \Omega} R_{C N}=\mathbf{5 \Omega}$ is converted into a delta network, resistance values are;
Option A:	$\mathrm{R}_{A B}=15.8 \Omega \mathrm{R}_{\mathrm{BC}}=26.3 \Omega \mathrm{R}_{\mathrm{CA}}=9.88 \Omega$
Option B:	$\mathrm{R}_{A B}=10 \Omega \mathrm{R}_{B C}=13 \Omega \mathrm{R}_{C A}=8 \Omega$
Option C:	$\mathrm{R}_{\mathrm{AB}}=8 \Omega \mathrm{R}_{\mathrm{BC}}=13 \Omega \mathrm{R}_{\mathrm{CA}}=8 \Omega$
Option D:	$\mathrm{R}_{\mathrm{AB}}=10 \Omega \mathrm{R}_{\mathrm{BC}}=11 \Omega \mathrm{R}_{\mathrm{CA}}=12 \Omega$
10.	A $110 \mathrm{~V}, 60 \mathrm{~W}$ bulb is operated on a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. What value of resistance must be connected in series, so that the bulb operates at the correct voltage.
Option A:	10Ω
Option B:	22Ω
Option C:	0.5Ω
Option D:	220Ω
11.	The peak value of a sine wave is 200 V . Its average value is
Option A:	12.74 V
Option B:	100 V
Option C:	127.4 V
Option D:	220 V
12.	A voltage of 120 V at 50 Hz is applied to a resistance, R in series with a capacitance C . The current drawn is 2 A , and the power loss in the resistance is 100 W. Calculate the capacitance.
Option A:	$10 \mu \mathrm{~F}$
Option B:	2.2 \%
Option C:	$58.36 \mu \mathrm{~F}$
Option D:	$47 \mu \mathrm{~F}$

13.	A circuit with a resistor, inductor and capacitor having resonant frequency f_{0}, if all the component values are now doubled, the new resonant frequency is
Option A:	$2 \mathrm{f}_{0}$
Option B:	$4 \mathrm{f}_{0}$
Option C:	$\mathrm{f}_{0} / 2$
Option D:	$\mathrm{f}_{0} / 4$
14.	A $200 \mathrm{~V}, 50 \mathrm{~Hz}$, inductive circuit takes a current of 10A, lagging 30 degree. Find the resistance R and reactance X_{t}
Option A:	20Ω and 10Ω
Option B:	20Ω and 5Ω
Option C:	17.32Ω and 10Ω
Option D:	3.3Ω and 5Ω
15.	A 415- V three-phase star connected system is connected to a delta connected balanced load of 100 ohm each. How much is the line current?
Option A:	2.866 A
Option B:	4.15A
Option C:	7.18A
Option D:	2.39A
16.	In a two wattmeter method measurement of the three phase power, one of the wattmeter is showing zero reading. Find the power factor of the circuit.
Option A:	1
Option B:	0
Option C:	0.5
Option D:	0.25
17.	During O.C and S.C testing of a transformer
Option A:	Both SC and OC tests are performed at rated current
Option B:	Both SC and OC tests are performed at rated voltage
Option C:	SC test is performed at rated voltage and OC test is performed at rated current
Option D:	SC test is performed at rated current and OC test is performed at rated voltage
18.	The leakage flux in the transformer is represented in equivalent circuit as
Option A:	Resistance connected in parallel with both primary and secondary winding
Option B:	Inductance connected in parallel with both primary and secondary winding
Option C:	Resistance connected in series with both primary and secondary winding
Option D:	Inductance connected in series with both primary and secondary winding
19.	The torque developed by a single-phase motor at starting is
Option A:	less than the rated torque
Option B:	More than the rated torque
Option C:	Zero
Option D:	None of these
20.	The rotational speed of a given stepper motor is determined solely by the
Option A:	Shaft load
Option B:	Step pulse frequency

Option C:	Polarity of stator current

Option D: \quad Magnitude of stator current.

Q2 (20 Marks Each)	
A	Solve any Two 5 marks each
1.	Two impedances $Z_{1}=(6+j 8)$ and $Z_{2}=(8-\mathrm{j} 6)$ are connected in series. If the applied voltage to the combination is 200 V . Find the total current and total power consumed.
ii.	Each phase of a three phase delta connected load has an impedance of Zph $=(50 \angle 30)$ ohms. The line voltage is 400 V .Calculate the total power.
iii.	Find the current through 3Ω resistor using Mesh Analysis.
B	Solve any One 10 marks each
1.	Explain the working principle of Transformer and derive the EMF equation of transformer. A single phase transformer has primary voltage of 230 V . No load primary current is 5 A . No-load pf is 0.25 . Number of primary turns is 200 and frequency is 50 Hz . Calculate (i) maximum value of flux in the core
ii.	Find the current flowing through 1Ohms resistor using Superposition theorem.

Q3 (20 Marks Each)	Solve any TWO
A	Explain principle of operation of Three-phase induction motor.
i.	Draw and explain phasor diagram of a transformer for Lagging power factor.
ii.	Find the RMS value of the waveform given below. iii. B i. Solve any One A voltage of (200 $\angle 53.13$) V is applied across two impedances in parallel. The values of the impedances are (12+j16) ohms and (10-j20) ohms. Determine kVA, kVAR and kW in each branch and power factor of the whole circuit.
Three identical choke coil are connected as a delta load to a three-phase supply. The line current drawn from the supply is 15A and the total power consumed is 7.5kW. The kVA input to the load is 10kVA. Find: Line and Phase voltage (ii) Impedance, Resistance and Reactance value of each phase (iii) (iv) Phaser factor Pharrent	

University of Mumbai

Examination 2020 under cluster \qquad (Lead College: \qquad)
Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to $\mathbf{2 0}^{\text {th }}$ January 2021
Program: __First Year Engineering \qquad
Curriculum Scheme: Rev2019
Examination: FE Semester I
Course Code: FEC105 and Course Name: Basic Electrical Engineering
Time: 2 hour
Max. Marks: 80
NOTE to the Question Paper Setter: (Following information has to be deleted before submitting the paper to Semester Coordinator)
Please save this file with file name as per the sample format given below:
File Name: Date of Examination_Scheme_Program_Semester_Subject Code_Answer Key Set Number For example:
Answer Key for QP set number 1 of Engineering Mathematics-I of First Year Semester I for Rev2019 scheme and scheduled on 7/01/2021 has to have the file name as

> 0701_R19_FE_I_FEC101_AK1

Answer Key for QP set number 1 of first core course of Mechanical Engineering Semester V for Rev2016 scheme and scheduled on 23/12/2020 has to have the file name as

> 2312_R16_Mech_V_MEC501_AK1

Answer Key for QP set number 3 of Department Level Optional Course of Computer Engineering Semester VI for Rev2012 scheme and scheduled on 3/01/2021 has to have the file name as

0301_R12_Comp_VI_CSDLO6021_AK3
$=$

Question Number	Correct Option Enter either 'A' or 'B' or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	D
Q2.	B
Q3.	D
Q4	D
Q5	B
Q6	B
Q7	B
Q8.	A
Q9.	A
Q10.	D

Q11.	C
Q12.	C
Q13.	C
Q14.	C
Q15.	C
Q16.	C
Q17.	D
Q18.	D
Q19.	C
Q20.	B

