University of Mumbai

Examination 2020 under cluster No.3 FCRIT

Program: First Year Engineering Curriculum Scheme: Rev2019 Examination: FE Semester I

Course Code: FEC102 and Course Name: Engineering Physics-I

Time: 1 and (1/2) hour

Max. Marks: 60

	Choose the correct option for following questions. All the Questions are	
Q1.	compulsory. (2 r	
	each)	
1.	$\frac{d^2\psi}{dx^2} + \frac{2m}{h^2} (E-V) \psi=0$	
	This equation represents	
Option A:	Schrödinger's time dependent equation	
Option B:	Schrödinger's time independent equation	
Option C:	Heisenberg's Equation	
Option D:	De-Broglie's equation	
2.	What is the resistivity of intrinsic Ge at 300k? (Given the density of carriers as	
	$2.5 \times 10^{19} / m^3$, $\mu_e = 0.39$ and $\mu_h = 0.19$)	
Option A:	0.53 Ω m	
Option B:	0.82 Ω m	
Option C:	0.43 Ω m	
Option D:	1.39 Ω m	
3.	The refractive index of the material of Anti-reflection coating should bethe substrate.	
Option A:	less than	
Option B:	greater than	
Option C:	equal to	
Option D:	Less than or greater than	
4.	What are the intercepts of the plane whose miller indices is (0 0 1)?	
Option A:	x=a, y=a, z=a	
Option B:	$x=\infty, y=\infty, z=a$	
Option C:	$x=a, y=a, z=\infty$	
Option D:	$x=\infty, y=a, z=a$	
5.	In case of super conduction at transition temperature, the electrical resistance of	
	a material	
Option A:	Is large.	
Option B:	Is less.	
Option C:	Vanishes.	

Option D:	Remains the same.	
6.	A particle is confined in a box of length 10 ⁻⁷ m. The minimum uncertainty in its momentum will be	
Option A:	ħx10 ⁻⁷ kg m/s	
Option B:	$\hbar x 10^7$ kg m/s	
Option C:	hx10 ⁻⁷ g m/s	
Option D:	$\hbar x 10^7 \text{ g m/s}$	
1		
7.	If acceptor impurity is added to an intrinsic semiconductor, it results into	
Option A:	P-type semiconductor	
Option B:	N-type semiconductor	
Option C:	P-N junction	
Option D:	P-type or N-type semiconductor.	
8.	In Newton's rings, the diameter of are proportional to the square	
	roots of natural numbers	
Option A:	Bright rings	
Option B:	Dark rings	
Option C:	Both bright and dark rings	
Option D:	Neither bright rings nor dark rings	
<u> </u>	What is the full-form of GMR?	
Option A:	Giant Magneto reluctance	
Option B:	Gaseous Magnetoresistance	
Option C:	Glant Magnetoresistance	
Option D.		
10	In Bragg's equation 2d sin $\theta = n\lambda$ what does ' θ ' represent?	
Option A [·]	Angle of diffraction	
Option B:	Glancing angle	
Option C:	Critical angle	
Option D:	Reflection angle	
1		
11.	Which of the following is the correct expression for Heisenberg's	
	Uncertainty Principle?	
Option A:	Δχ Δρχ≤ħ	
Option B:	$\Lambda t \Lambda F \geq \hbar$	
Option C:	$\Delta t \Delta x > \hbar$	
Option D [.]	$\Delta L \Delta \chi < 3$	
• F		
12	The mobility of electrons is that of holes	
Option A:	Less than	
Option B:	Equal to	
Option C:	Larger than	
Option D [.]	Less than or greater than	

13.	If reflected light of wavelength λ = 5900A.U is used to observe Newton's ring, the diameter of 10th dark ring is 0.5 cm then the radius of curvature of the lens is
Option A:	2.05 cm
Option B:	1.059 m
Option C:	1.59 m
Option D:	1.95m
14.	Plates of supercapacitors are coated with porous material for
Option A:	Protecting plates from damage
Option B:	Giving porous texture to plates
Option C:	Increasing surface area for storage
Option D:	Decreasing surface for storage
15.	Which is not a type of liquid crystal in the following?
Option A:	Thermotropic
Option B:	Anisotropic
Option C:	Metallotropic
Option D:	Lyotropic

Q2	Solve any Three. (5 1	marks each)
А	When an electron is accelerated through a potential difference what is wavelength of the wave the electron is associated with	e of 10000 V, n?
В	What are crystal planes and miller indices? Draw the planes (1 2 1) in a cube.	.10) and (1
С	Explain the principle, construction and working of a LED.	
D	Derive the expression for the diameters of the Bright Newton's viewed in Reflected light.	s rings when
Е	What is Meissner effect? Show that in the superconductin material is perfectly diamagnetic with the help of proper equa	ng state, the itions.

Q3.	Solve any Three.	(5 marks each)
_		
А	Using Uncertainty principle, show that electrons cannot nucleus.	exist within the
В	Differentiate between Direct and Indirect semiconductors.	
С	A mixture of red light of wavelength 6600A ^o and blue light 4400A ^o is incident normally on an air film formed by two global stress s	ht of wavelength asses plates. The

	thickness of the air film is 3300A ^o . What is the color of light reflected by			
	the air film?			
D	What is a super capacitor? What are the advantages of			
D	using supercapacitor instead of battery?			
E	Define Multiferroics. Differentiate between Type I and Type II			
E	multiferroics.			

University of Mumbai

Examination 2020 under cluster No.3 FCRIT

Program: First Year Engineering Curriculum Scheme: Rev2019 Examination: FE Semester I Course Code: FEC102 and Course Name: Engineering Physics-I

Time: 1 and (1/2) hour

Max. Marks: 60

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	В
Q2.	С
Q3.	А
Q4	В
Q5	С
Q6	В
Q7	А
Q8.	В
Q9.	С
Q10.	В
Q11.	В
Q12.	С
Q13.	В
Q14.	С
Q15.	В