University of Mumbai

Examination 2020 under cluster 7(Lead College: SSJCOE)

Examinations Commencing from 7th January 2021 to 20th January 2021

Program: Information Technology

Curriculum Scheme: Rev 2019

Examination: SE Semester III

Course Code: ITC302 and Course Name: Data Structure and Analysis

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	In the worst case the time required to search an element in a linked list of length n	
	is?	
Option A:	O(n)	
Option B:	O(log2 n)	
Option C:	O(1)	
Option D:	O(n2)	
2.	Consider a linked list of n elements which is pointed by an external pointer. What	
	is the time taken to delete the element which is the successor of the element	
	pointed to by a given pointer?	
Option A:	O(1)	
Option B:	O(log2 n)	
Option C:	O(n)	
Option D:	O(n log2 n)	
3.	Which of the following operations is performed more efficiently by a linear	
	doubly linked list than by a linear singly linked list?	
Option A:	Deleting a node whose location is given	
Option B:	Searching an unsorted list for a given item	
Option C:	Inserting a node after a node with a given location	
Option D:	Traversing the list to process each node	
4.	A linear list in which the elements can be added or removed at either end but not	
	in the middle is called as?	
Option A:	queue	
Option B:	dequeue	
Option C:	stack	
Option D:	tree	
5.	A binary tree in which all of the nodes are of degree zero or two but never degree	
	one is called as ?	
Option A:	Binary Search Tree	
Option B:	Left Skewed Binary Tree	
Option C:	Strictly Binary Tree	
Option D:	Right Skewed Tree	

6.	What is the height of a constructed Binary Search Tree if elements 48, 22, 27, 30,		
	96, 74, 88, 35 are inserted in an empty Binary Search tree as per given order?		
Option A:	6		
Option B:	3		
Option C:	2		
Option D:	4		
7			
1.	Mat is the Postorder Traversal of a Binary tree if its inorder traversal is		
Option A:			
Option R:			
Option C:	PMONI		
Option D:	NPMOL		
Option D.			
8	What is the node structure for Threaded Binary Tree?		
Option A [•]	struct node		
opuonin			
	struct node * LeftChild;		
	bool Left_Tag;		
	struct node * RightChild;		
	bool Left_Tag;		
	}; };		
Option B:	struct node		
	struct node * RightChild;		
Option C [.]	struct node		
option c.			
	struct node * LeftChild;		
	bool Left_Tag;		
	};		
Option D:	struct node		
	struct node * LeftChild;		
	b001 lag; struct node * DightChild:		
9.	Number of vertices in a graph of odd degree is?		
Option A:	always even		
Option B:	always odd		
Option C:	either even or odd		
Option D:	always zero		
10.	The terminal vertices of a path are of a degree?		
Option A:	one		
Option B:	two		
Option C:	zero		
Option D:	more than four		

11.	A simple graph with n vertices and k components can have at most			
Option A:	n edges			
Option B:	n-k edges			
Option C:	(n-k)(n-k-1)/2 edges			
Option D:	(n-k)(n-k+1)/2 edges			
12.	In recursion, the unwinding phase starts when?			
Option A:	The first call to the recursive function is made by main()			
Option B:	The first call to itself by the recursive function			
Option C:	The terminating condition becomes true in the recursive function			
Option D:	The control is returned back to the main() from the recursive function			
12				
13.	Which of the following methods will not suffer from the fragmentation?			
Option A:	Allocating the first free block that is large enough to fulfill the request			
Option B:	I raversing the whole free memory list and allocating the block which is closest in			
Ontion C:	Allocating the free block equal in size as required by the process			
Option D:	Allocating the block in the multiple of fixed size			
Option D.				
14	Which of the methods traverses the whole free block list and allocates a memory			
	block of size equal to or slight more than required by the process?			
Option A:	Free fit			
Option B:	First fit			
Option C:	Best fit			
Option D:	Worst fit			
15.	In the worst case of the binary search algorithm, how many comparisons will be made, if the data set contains N elements?			
Option A:	1			
Option B:	N Log ₂ N			
Option C:	Log ₂ N			
Option D:	N			
16.	If the data set is $\{123, 12, 23, 22, 54, 56, 45\}$, and storage size is 10 where			
	undexing starts from 0 then in nashing by "folding method", now many collisions			
	digit			
Ontion A:	0			
Option B:	1			
Option C:	2			
Option D ⁻	3			
17.	If the data set is {123, 12, 23, 22, 54, 56, 45}, after the first iteration what will be			
	the updated data set in the insertion sort algorithm?			
Option A:	{12, 23, 22, 45, 54, 56, 123}			
Option B:	{12, 23, 22, 54, 56, 45, 123}			
Option C:	{12, 22, 23, 45, 54, 56, 123}			
Option D:	{12, 23, 22, 45, 56, 54, 123}			

18.	What is Postfix Expression of given Infix Expression L+(M*(N-O)/P)?		
Option A:	LMNO-*P/+		
Option B:	LMNO-P/*+		
Option C:	LMNOP-/*+		
Option D:	LMNO-/P*+		
19.	Element with the largest key in Max-Heap is always present in which node of it?		
Option A:	At Left Child of root node		
Option B:	At Leaf Node		
Option C:	At Right child of root node		
Option D:	At Root Node		
20.	Let G be a connected undirected graph with 200 vertices and 400 edges. The weight of the Minimum Spanning Tree of G is 800. When the weight of each edge of G is increased by eight, the weight of a Minimum Spanning Tree will be:		
Option A:	3200		
Option B:	1600		
Option C:	2392		
Option D:	1392		

Q2	Total 20 marks.	
Q2A	Solve any Two, 5 marks each, total 10 marks.	
i.	Explain the insertion sort algorithm, along with a working example.	
ii.	Write Inorder Traversal, Preorder Traversal and Postorder Traversal sequence for given binary tree by giving its algorithm.	
iii.	Write an algorithm to convert an arithmetic expression 'I' written in infix notation into its equivalent postfix expression 'P'.	
Q2B	Solve any One, 10 marks each, total 10 marks.	
i.	Explain what is a Doubly linked list along with its operations: traversing, searching, insertion and deletion. Proper diagrammatic representations of operations as mentioned above, are also expected. Also, write two computer world applications of the doubly linked list data structure.	
ii.	What is an AVL Tree? Construct an AVL tree for the following dataset: 22, 27, 31, 10, 5, 15, 39, 19, 16, 11, 3, 4, 8 Mention the rotation, if any, at each step.	

Q3	Total 20 marks.
Q3A	Solve any Two, 5 marks each, total 10 marks.

i.	Generate a Huffman Tree for the string EBEABCCEAD . At the end specify the
	Huffman code for each character in the given string. Specify how much memory
	bits are saved from the original, if 8 bits per character are required to store the
	string in original format.
ii.	With example, explain three sequential fit methods of storage management.
iii.	Explain Collision in hashing with an example. What are the methods to resolve
	collision? Explain Linear Probing with an example.
Q3B	Solve any One, 10 marks each, total 10 marks.
i.	Explain the working of stack with its operations: push, pop, peek, display, empty,
	full. Proper diagrammatic representations of operations as mentioned above, are
	also expected. Also, write two applications (algorithms) where stack data
	structure is used.
ii.	Write Prim's algorithm and Kruskal's algorithm to find Minimum Spanning Tree
	(MST). Also for the given graph below, find the MST using Prim's algorithm and
	Kruskal's algorithm, both. Specify the cost at each step, and total weight.
	2 / (A) / 1
	5
	4
	5 (C) - T

University of Mumbai

Examination 2020 under cluster 7(Lead College: SSJCOE)

Examinations Commencing from 7th January 2021 to 20th January 2021

Program: Information Technology

Curriculum Scheme: Rev 2019

Examination: SE Semester III

Course Code: ITC302 and Course Name: Data Structure and Analysis

Time: 2 hour

_

.

Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	А
Q2.	А
Q3.	А
Q4	В
Q5	С
Q6	D
Q7	А
Q8.	А
Q9.	А
Q10.	А
Q11.	D
Q12.	С
Q13.	С
Q14.	С
Q15.	С
Q16.	В
Q17.	В
Q18.	А
Q19.	D
Q20.	С