University of Mumbai

Examination 2020 under cluster 5(Lead College: APSIT)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev 2019

Examination: SE, Semester: III

Course Code: ECC302 and Course Name: Electronic Devices and Circuits

Time: 2 Hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1	Cut in voltage for Si and Co diado is respectively	
Ontion A:	0.7 V and 0.2 V	
Option R.	0.7 v and $0.3 v$	
Option B:	0.5 V and $0.7 V$	
Option C:		
Option D:	0.7 V and 0.5 V	
2.	In forward bias diode current increases	
Option A:	linearly	
Option B:	exponentially	
Option C:	parabolic	
Option D:	hyperbolic	
3.	In reverse bias current suddenly increase after	
Option A:	breakdown	
Option B:	breakover	
Option C:	cut in	
Option D:	cut out	
4.	If temperature increases VI characteristics sifts to and if decreases it	
	shifts to	
Option A:	left, right	
Option B:	right, left	
Option C:	left, remains constant	
Option D:	right, remains constant	
5.	For Zener diode as a voltage regulator , line regulation means	
Option A:	fixed input voltage and fixed load resistor	
Option B:	variable input voltage and variable load resistor	
Option C:	fixed input voltage and variable load resistor	
Option D:	variable input voltage and fixed load resistor	

6.	The value of thermal voltage Vt at room temprature T=300K is calculated by	
	and it is	
Option A:	KT/q, 26mV	
Option B:	KT/q, 28mV	
Option C:	q/KT, 26mV	
Option D:	q/KT, 28mV	
7.	A silicon pn junction at T = 300 K has a reverse saturation current of IS = 2 \times	
	10exp-14 A. Determine the required forward-bias voltage to produce a current of	
	ID = 1 mA.	
Option A:	641V	
Option B:	6.41V	
Option C:	64.1V	
Option D:	0.641V	
8.	A transistor with $\beta = 120$ is biased to operate at a dc collector current of 1.2 mA.	
	Find the value of $r\pi$.	
Option A:	625 ohm	
Option B:	1250 ohm	
Option C:	2500 ohm	
Option D:	5000 ohm	
9.	The phase difference between the output and input voltages of a CE amplifier is	
Option A:	180°	
Option B:	0°	
Option C:	90°	
Option D:	270°	
10.	When a transistor amplifier is operating, the current in any branch is	
Option A:	Sum of AC and DC	
Option B:	AC only	
Option C:	DC only	
Option D:	Difference of AC and DC	
11.	The point of intersection of d.c. and a.c. load lines is called	
Option A:	Saturation point	
Option B:	Cut off point	
Option C:	Operating point	
Option D:	Critical point	
12.	To amplify low frequency signal,is used in multistage	
	amplifiers.	

Option A:	RC coupling	
Option B:	transformer coupling	
Option C:	impedance coupling	
Option D:	direct coupling	
13.	Which of the following is the fastest switching device?	
Option A:	MOSFET	
Option B:	Triode	
Option C:	JFET	
Option D:	BJT	
14.	Before the invention of power amplifiers for the amplification of audio signals	
	generally device was used	
Option A [.]	Diode	
Option B:	OPAMP	
Option C:	Vacuum tubes	
Option D:	SCR	
1		
15.	Power amplifier directly amplifies	
Option A:	Voltage of signal but not Current	
Option B:	Current of the signal but not Voltage	
Option C:	Power of the signal but not Voltage and Current	
Option D:	Voltage, Current and Power of the signal	
-		
16.	In a multistage amplifier, generally the output stage is also called	
Option A:	Mixer stage	
Option B:	Power stage	
Option C:	Detector stage	
Option D:	Amplifier stage	
17.	The maximum efficiency of resistance loaded class A power amplifier is	
Ontion A:	5.04	
Option R:	50.0%	
Option C:	30 %	
Option D:	25 %	
18	The Maximum and minimum output of the Differential amplifiers is defined as:	
Option A.	$V_{max} = V_{pp}$ $V_{min} = -V_{pp}$	
Option R.	$V_{\text{max}} = V_{\text{DD}}, V_{\text{min}} = P_{\text{DD}}$ $V_{\text{max}} = V_{\text{DD}}, V_{\text{min}} = P_{\text{DD}} + V_{\text{DD}}$	
Option C.	$V_{\text{max}} = V V_{\text{min}} = V -\mathbf{R} V_{\text{max}}$	
Option D.	$V_{\text{max}} = V_{\text{pp}} V_{\text{min}} = -V_{\text{pp}}$	
Option D.		
l		

19.	In Common Mode Differential Amplifier, the outputs Vout ₁ and Vout ₂ are related		
	as:		
Option A:	Vout ₂ is in out of phase with Vout ₁ with same amplitude.		
Option B:	Vout ₂ and Vout ₁ have same amplitude but the phase difference is 90 degrees		
Option C:	Vout ₁ and Vout ₂ have same amplitude and are in phase with each other and their		
	respective inputs.		
Option D:	Vout ₁ and Vout ₂ have same amplitude and are in phase with each other but out of		
	phase with their respective inputs.		
20.	If output is measured between two collectors of transistors, then the Differential		
	amplifier with two input signal is said to be configured as		
Option A:	Dual Input Balanced Output		
Option B:	Dual Input Unbalanced Output		
Option C:	Single Input Balanced Output		
Option D:	Single Input Unbalanced Output		

Q2.	Solve any Two Questions out of Three 10 marks each
A	Determine the following for the network given below Fig. 1 Voltage gain, Current gain, input impedance and output impedance $47K R_1 R_2 \cdot 7K$ $47K R_1 R_2 \cdot 7K$ $100 R_2 \cdot 7K$ $22K R_2 R_2 R_2 \cdot 100 $
В	With neat diagram derive the efficiency of transformer coupled class –A power amplifier? State its uses.
С	Explain construction and working of n-channel E-MOSFET with output characteristics

Q3.	
А	Solve any Two 5 marks each
i.	Compare BJT and JFET
ii.	Explain working of pn junction diode with the help of VI characteristics.

iii.	Determine the range of values of Vi that will maintain the Zener diode of
	Fig. 2 in the "on" state.
	$R \xrightarrow{I_R} I_L$ 220Ω $V_Z = 20 V$ $I_Z = 60 \text{ mA}$ R_L $I_L + V_L$ $I_L + V_L$
D	Fig. 2
B	Solve any One 10 marks each For the circuit shown in Fig. 3, the transistor parameter are $V_{(\alpha)} = 0.7$
1.	V $\beta = 200$ V $\Delta = \infty$
	i Derive the expression for lower cutoff frequency due to input
	coupling capacitor
	ii Determine lower cut-off frequency and voltage gain
	II. Determine lower cut-on nequency and voltage gain 47.4F 6.1K 47.4F 7.4F
ii	Explain the MOS differential pair amplifier with a common-mode input voltage v_{CM} .

University of Mumbai

Examination 2020 under cluster 5(Lead College: APSIT)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev 2019

Examination: SE, Semester: III

Max. Marks: 80

Course Code: ECC302 and Course Name: Electronic Devices and Circuits

Time: 2 hour

Question	Correct Option
Number	(Enter either 'A' or 'B' $(C' \circ r' D')$
	or (C or (D))
Q1.	A
Q2.	В
Q3.	А
Q4	А
Q5	D
Q6	А
Q7	D
Q8.	С
Q9.	А
Q10.	А
Q11.	С
Q12.	D
Q13.	А
Q14.	С
Q15.	D
Q16.	В
Q17.	D
Q18.	С
Q19.	D
Q20.	A