University of Mumbai

Examination 2020 under Cluster 3 (Lead College: Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai)

Examinations Commencing from 22rd April 2021 to 30th April 2021

Program: F.E (All Branches) (Choice Based) (R-2019-20 'C' Scheme)

Curriculum Scheme: Rev 2019 C Scheme

Examination: FE Semester I

Course Code: FEC105 and Course Name: Basic Electrical Engineering

Time: 2 hours

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1	
1.	An RLC series circuit is in resonance when
Option A:	Voltage across inductor and voltage across capacitor are different.
Option B:	Inductive reactance is less than capacitive reactance.
Option C:	Inductive reactance is greater than capacitive reactance.
Option D:	Inductive reactance and capacitive reactance are equal.
2.	If open circuit voltage is 18.75 V and the equivalent resistance is 4 Ohms, the maximum power transferred to the load will be
Option A:	21.97W
Option B:	9.36W
Option C:	75W
Option D:	4.68W
3.	Three delta connected resistors absorb 180KW when connected to a three-phase line. If the resistors are connected in star, the power absorbed is
Option A:	540KW
Option B:	90KW
Option C:	60KW
Option D:	180KW
•	
4.	In an R-L-C series circuit, the voltages across the resistor, inductor and capacitor are 12V, 15V and 10V respectively. What is the supply voltage?
Option A:	13V
Option B:	10V
Option C:	5V
Option D:	37V
5.	If a star network has three branches as Ran= 8 Ohms, Rbn= 3 Ohms and Rcn= 12 Ohms, then its equivalent delta circuit will have
Option A:	Rab = 14 Ohms, Rbc = 27 Ohms, Rca = 28 Ohms
Option B:	Rab = 13 Ohms, Rbc = 19.5 Ohms, Rca = 5.2 Ohms
Option C:	Rab = 24 Ohms, Rbc = 36 Ohms, Rca = 96 Ohms
Option D:	Rab = 13 Ohms, Rbc = 19.5 Ohms, Rca = 52 Ohms

6.	In a star connected system, current in the line conductor is	
Option A:	Equal to the phase current	
Option B:		
Option C:	Lesser than the phase current	
Option D:	Greater or lower both are possible	
Option D.	Greater than the phase current	
7.	If R is the resistance of secondary winding of an electrical transformer and K $(K = N_2/N_1)$ is the transformation ratio then the equivalent secondary	
Ontion A:	resistance referred to primary will be R/VK	
Option A:		
Option B:	R/K ²	
Option C:	RK ²	
Option D:	K/R ²	
8.	The equation of 50Hz current sine wave having rms value of 60A is	
Option A:	60 sin 25t	
Option B:	60 sin 50t	
Option C:	84.85 sin 314t	
Option D:	42.42 sin 314t	
9.	If a voltage source of 5 Volts has an internal resistance of 0.2 Ohms, then its	
	equivalent circuit after source transformation would be	
Option A:	5 A current source with 0.2 Ohms connected in series with it	
Option B:	5 V voltage source in parallel with 0.2 Ohms	
Option C:	25 V voltage source in series with 0.2 Ohms	
Option D:	25 A current source in parallel with 0.2 Ohms	
10.	An induction motor operates on the basis of interaction between	
Option A:	two currents flowing in opposite directions	
Option B:	two similar magnetic poles	
Option C:	stator and rotor fields	
Option D:	three currents flowing in same direction	
11.	Voltage division rule and current division rule are applicable to and circuits respectively.	
Option A:	Series and Parallel	
Option B:	Parallel and Series	
Option C:	Series and Series	
Option D:	Parallel and Parallel	
c puon D.		
12.	A transformer has turns ratio N1:N2 of 6. If a 40 Ohms resistance is connected	
12.	across the secondary, what is the resistance referred to the primary?	
Option A:	240 Ohms	
Option B:	1440 Ohms	
Option D:	2750 Ohms	
Option D:	5.7 KOhms	
	I	

13.	A coil having a resistance of 15 Ohms and an inductance of 25 mH is connected	
	to a 230 V, 50 Hz supply. Calculate the impedance of the coil and the current	
	flowing through the circuit.	
Option A:	16.9 Ohms, 13.6A	
Option B:	13.6 Ohms, 16.9 A	
Option C:	22.85 Ohms, 10.06A	
Option D:	22.85 Ohms, 16.9A	
14.	The algebraic sum of the currents meeting at a junction or a node in an electric circuit is	
Option A:	infinity	
Option B:	dependent on applied voltage	
Option C:	zero	
Option D:	unity	
15.	For an R-C series circuit, currentthe applied voltage by	
Option A:	leads, an angle less than 90 degrees	
Option B:	lags, an angle greater than 90 degrees	
Option C:	leads, an angle equal to 90 degrees	
Option D:	lags, an angle equal to 90 degrees	
16.	In a single-phase transformer, the purpose of open circuit test is to determine	
Option A:	Equivalent resistance	
Option B:	Iron loss	
Option C:	Full load copper loss	
Option D:	Equivalent reactance	
17.	If a current of 8 Amperes flows through a resistor of 5 Ohms which is in series with a parallel combination of 2 Ohms, 2.5 Ohms and 3 Ohms, calculate the current through 2.5 Ohm resistor.	
Option A:	2.59A	
Option B:	5.2A	
Option C:	6.6A	
Option D:	1.5A	
18.	Slip is expressed as a percentage of	
Option A:	Torque	
Option B:	Stator speed	
Option C:	Synchronous speed	
Option D:	Rotor speed	
19.	Four resistances of values 5 ohms, 10 ohms, 15 ohms and 20 ohms are connected in series across a 50V source. How is this voltage divided among these resistors?	
Option A:	10V, 10V, 20V, 10V	
Option B:	5V, 10V, 15V, 20V	
Option C:	5V, 5V, 20V, 20V	
Option D:	20V, 10V, 10V, 10V	
20.	In a linear circuit, the superposition theorem can be applied to calculate the	

Option A:	voltage and power
Option B:	current and power
Option C:	power
Option D:	voltage and current

Q2		
А	Solve any Two	5 marks each
i.	Using mesh analysis find the current 'i' flowing through the the circuit shown below: $50 \Omega 40 \Omega 10 \Omega$ W	6V source in
	$20 \Omega \clubsuit 6 V \begin{pmatrix} + \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	20 Ω
	=	
ii.	The resonance frequency of an RLC series circuit is 1200Hz 40. If impedance at resonance is 50 Ohms, find the values of 3) bandwidth 4) upper and lower cutoff frequencies.	
iii.	With reference to ac quantities explain the terms: Instantaneo RMS Value, Form Factor, Peak Factor.	us Value,
В	Solve any One each	10 marks
i.	Find the current flowing through the 23 Ohms resistance by a Superposition Theorem. 4 Ω 47 Ω 27 Ω 20 V (2^{-1}) 20 A	ıpplying 23 Ω
ii.	The voltage applied to an ac series circuit containing $R = 30$ H and $C = 50$ microfarad is 200V, 50 Hz. Find the circuit im	

circuit current, power factor, active power, reactive power and apparent
power.

Q3.	
А	Solve any Two5 marks each
i.	State and explain maximum power transfer theorem.
ii.	The equation of an alternating current is given by i = 60 sin 300t. Determine 1) maximum value 2) frequency 3) rms value 4) average value 5) form factor.
iii.	How to obtain the approximate equivalent circuit of a transformer as referred to the primary?
В	Solve any One 10 marks each
i.	Three inductive coils, each with a resistance of 20 Ohms and an inductance of 0.04 H are connected 1) in star and 2) in delta, to a three phase, 400V, 50 Hz supply. Calculate for each of the above case 1) Phase current and Line Current and 2) Total power absorbed.
ii.	The following data were obtained from testing a 5kVA, 200/400V, 50Hztransformer:OC Test (LV side): 200 V0.7A70WSC Test (HV side): 22 V10A85WDetermine the equivalent circuit of the transformer referred to the lowvoltage side and insert all the parameter values obtained.

University of Mumbai

Examination 2020 under cluster (Lead College: Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai)

Examinations Commencing from 22nd April 2021 to 30th April 2021

Program: F.E (All Branches) (Choice Based) (R-2019-20 'C' Scheme)

Curriculum Scheme: Rev2019 – C Scheme

Examination: FE Semester I

Course Code: FEC 105 and Course Name: Basic Electrical Engineering

Time: 2 hours

Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	D
Q2.	А
Q3.	С
Q4	А
Q5	D
Q6	А
Q7	В
Q8.	С
Q9.	D
Q10.	С
Q11.	А
Q12.	В
Q13.	Α
Q14.	С
Q15.	А
Q16.	В
Q17.	А
Q18.	С
Q19.	В
Q20.	D

1 | Page