University of Mumbai

Examination 2020 under Cluster 3 (Lead College: Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai)
Examinations Commencing from 22 ${ }^{\text {rd }}$ April 2021 to 30th April 2021
Program: F.E (All Branches) (Choice Based) (R-2019-20 'C' Scheme)
Curriculum Scheme: Rev 2019 C Scheme
Examination: FE Semester I
Course Code: FEC105 and Course Name: Basic Electrical Engineering
Time: 2 hours
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	An RLC series circuit is in resonance when
Option A:	Voltage across inductor and voltage across capacitor are different.
Option B:	Inductive reactance is less than capacitive reactance.
Option C:	Inductive reactance is greater than capacitive reactance.
Option D:	Inductive reactance and capacitive reactance are equal.
2.	If open circuit voltage is 18.75 V and the equivalent resistance is 4 Ohms, the maximum power transferred to the load will be
Option A:	21.97 W
Option B:	9.36 W
Option C:	75 W
Option D:	4.68 W
3.	Three delta connected resistors absorb 180 KW when connected to a three-phase line. If the resistors are connected in star, the power absorbed is
Option A:	540 KW
Option B:	90 KW
Option C:	60 KW
Option D:	180 KW
4.	In an R-L-C series circuit, the voltages across the resistor, inductor and capacitor are $12 \mathrm{~V}, 15 \mathrm{~V}$ and 10 V respectively. What is the supply voltage?
Option A:	13 V
Option B:	10 V
Option C:	5 V
Option D:	37 V
5	

6.	In a star connected system, current in the line conductor is
Option A:	Equal to the phase current
Option B:	Lesser than the phase current
Option C:	Greater or lower both are possible
Option D:	Greater than the phase current
7.	If R is the resistance of secondary winding of an electrical transformer and K ($K=N_{2} / N_{1}$) is the transformation ratio then the equivalent secondary resistance referred to primary will be
Option A:	R/VK
Option B:	R/K ${ }^{2}$
Option C:	RK ${ }^{2}$
Option D:	K/R ${ }^{2}$
8.	The equation of 50 Hz current sine wave having rms value of 60 A is
Option A:	$60 \sin 25 \mathrm{t}$
Option B:	$60 \sin 50 \mathrm{t}$
Option C:	$84.85 \sin 314 \mathrm{t}$
Option D:	$42.42 \sin 314 \mathrm{t}$
9.	If a voltage source of 5 Volts has an internal resistance of 0.2 Ohms, then its equivalent circuit after source transformation would be
Option A:	5 A current source with 0.2 Ohms connected in series with it
Option B:	5 V voltage source in parallel with 0.2 Ohms
Option C:	25 V voltage source in series with 0.2 Ohms
Option D:	25 A current source in parallel with 0.2 Ohms
10.	An induction motor operates on the basis of interaction between
Option A:	two currents flowing in opposite directions
Option B:	two similar magnetic poles
Option C:	stator and rotor fields
Option D:	three currents flowing in same direction
11.	Voltage division rule and current division rule are applicable to \qquad and \qquad circuits respectively.
Option A:	Series and Parallel
Option B:	Parallel and Series
Option C:	Series and Series
Option D:	Parallel and Parallel
12.	A transformer has turns ratio $\mathrm{N} 1: \mathrm{N} 2$ of 6 . If a 40 Ohms resistance is connected across the secondary, what is the resistance referred to the primary?
Option A:	240 Ohms
Option B:	1440 Ohms
Option C:	2750 Ohms
Option D:	5.7 KOhms

13.	A coil having a resistance of 15 Ohms and an inductance of 25 mH is connected to a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate the impedance of the coil and the current flowing through the circuit.
Option A:	16.9 Ohms, 13.6A
Option B:	13.6 Ohms, 16.9 A
Option C:	22.85 Ohms, 10.06A
Option D:	22.85 Ohms, 16.9A
14.	The algebraic sum of the currents meeting at a junction or a node in an electric circuit is
Option A:	infinity
Option B:	dependent on applied voltage
Option C:	zero
Option D:	unity
15.	For an R-C series circuit, current ____tye applied voltage by ____ .
Option A:	leads, an angle less than 90 degrees
Option B:	lags, an angle greater than 90 degrees
Option C:	leads, an angle equal to 90 degrees
Option D:	lags, an angle equal to 90 degrees
16.	In a single-phase transformer, the purpose of open circuit test is to determine
Option A:	Equivalent resistance
Option B:	Iron loss
Option C:	Full load copper loss
Option D:	Equivalent reactance
17.	If a current of 8 Amperes flows through a resistor of 5 Ohms which is in series with a parallel combination of $2 \mathrm{Ohms}, 2.5 \mathrm{Ohms}$ and 3 Ohms , calculate the current through 2.5 Ohm resistor.
Option A:	2.59 A
Option B:	5.2A
Option C:	6.6A
Option D:	1.5 A
18.	Slip is expressed as a percentage of
Option A:	Torque
Option B:	Stator speed
Option C:	Synchronous speed
Option D:	Rotor speed
19.	Four resistances of values 5 ohms, 10 ohms, 15 ohms and 20 ohms are connected in series across a 50 V source. How is this voltage divided among these resistors?
Option A:	$10 \mathrm{~V}, 10 \mathrm{~V}, 20 \mathrm{~V}, 10 \mathrm{~V}$
Option B:	$5 \mathrm{~V}, 10 \mathrm{~V}, 15 \mathrm{~V}, 20 \mathrm{~V}$
Option C:	$5 \mathrm{~V}, 5 \mathrm{~V}, 20 \mathrm{~V}, 20 \mathrm{~V}$
Option D:	$20 \mathrm{~V}, 10 \mathrm{~V}, 10 \mathrm{~V}, 10 \mathrm{~V}$
20.	In a linear circuit, the superposition theorem can be applied to calculate the

Option A:	voltage and power
Option B:	current and power
Option C:	power
Option D:	voltage and current

Q2	
A	Solve any Two 5 marks each
i.	Using mesh analysis find the current ' i ' flowing through the 6 V source in the circuit shown below:
ii.	The resonance frequency of an RLC series circuit is 1200 Hz and Q factor is 40. If impedance at resonance is 50 Ohms , find the values of 1) L 2) C 3) bandwidth 4) upper and lower cutoff frequencies.
iii.	With reference to ac quantities explain the terms: Instantaneous Value, RMS Value, Form Factor, Peak Factor.
B	Solve any One each 10 marks
i.	Find the current flowing through the 23 Ohms resistance by applying Superposition Theorem.
ii.	The voltage applied to an ac series circuit containing $\mathrm{R}=30 \mathrm{Ohms}, \mathrm{L}=0.1$ H and $\mathrm{C}=50$ microfarad is $200 \mathrm{~V}, 50 \mathrm{~Hz}$. Find the circuit impedance,

	circuit current, power factor, active power, reactive power and apparent power.

Q3.	
A	Solve any Two
i.	State and explain maximum power transfer theorem.
ii.	The equation of an alternating current is given by i = 60 sin 300t. Determine 1) maximum value 2) frequency 3) rms value 4) average value 5) form factor.
iii.	How to obtain the approximate equivalent circuit of a transformer as referred to the primary?
B	Solve any One each
i.	Three inductive coils, each with a resistance of 20 Ohms and an inductance of 0.04 H are connected 1) in star and 2) in delta, to a three phase, 400V, 50 Hz supply. Calculate for each of the above case 1) Phase current and Line Current and 2) Total power absorbed.
ii.	The following data were obtained from testing a 5kVA, 200/400V, 50Hz transformer: OC Test (LV side): 200 V SC Test (HV side): 22 V 0.7A \quad 10 \quad 70W Determine the equivalent circuit of the transformer referred to the low voltage side and insert all the parameter values obtained.

University of Mumbai

Examination 2020 under cluster (Lead College: Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai)
Examinations Commencing from 22nd April 2021 to 30th April 2021
Program: F.E (All Branches) (Choice Based) (R-2019-20 'C' Scheme)
Curriculum Scheme: Rev2019 - C Scheme
Examination: FE Semester I
Course Code: FEC 105 and Course Name: Basic Electrical Engineering
Time: 2 hours
Max. Marks: 80

Question Number	Correct Option Enter either 'A' or 'B' or ' \mathbf{C}^{\prime} or ' \mathbf{D}^{\prime} '
Q1.	D
Q2.	A
Q3.	C
Q4	A
Q5	D
Q6	A
Q7	B
Q8.	C
Q9.	D
Q10.	C
Q11.	A
Q12.	B
Q13.	A
Q14.	C
Q15.	A
Q16.	A
Q17.	C
Q18.	B
Q19.	
Q20.	

