University of Mumbai

Examination 2020 under cluster 03 (Lead College: FCRIT)
Examinations Commencing from 22 ${ }^{\text {rd }}$ April 2021 to 30 th April 2021
Program: First Year Engineering (All Branches)
Curriculum Scheme: Rev2019 C Scheme
Examination: FE Semester I
Course Code: FEC104 and Course Name: Engineering Mechanics
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Equilibrium of a rigid body in statics refers to
Option A:	Balance of forces in static condition
Option B:	Balance of forces and moments in static condition
Option C:	Balance of energy of body
Option D:	Balance of inertia force and inertia moments
2.	Kinematics of rigid body is
Option A:	Study of geometry of motion considering the cause of motion
Option B:	Study of external force acting on it without considering the geometry of motion
Option C:	Study of geometry of motion without considering the cause of motion
Option D:	Finding the reaction forces and the moments at the supports
3.	Resultant of the forces $\boldsymbol{F}_{1}=30 \boldsymbol{i}+20 \boldsymbol{j}$ and $\boldsymbol{F}_{2}=-20 \boldsymbol{i}+10 \boldsymbol{j}$ is
Option A:	31.62 N acting along 71.56° to the x -axis
Option B:	31.62 N acting along 18.56° to the x -axis
Option C:	3100 N acting along 71.56° to the x -axis
Option D:	31.62 N acting along 18.43° to the x -axis
4.	Pushing or pulling of a vehicle with same magnitude of force along the same line of action is an illustration of \qquad .
Option A:	Equilibrium
Option B:	Principle of transmissibility
Option C:	Newtons III law
Option D:	Newtons II law
5.	A block of mass 30 kg is kept on a smooth inclined plane of 30° and is supported by a force F acting parallel to the plane. The magnitude of force is
Option A:	14.71 N
Option B:	147.15 N
Option C:	300 N
Option D:	150 N
6.	A rod PQ carries three loads of $40 \mathrm{~N}, 70 \mathrm{~N}$, and 100 N at $30 \mathrm{~mm}, 90 \mathrm{~mm}$ and 160 mm respectively from point P . Neglecting weight of the rod, the position of resultant is away from point P.

Option A:	11.19 mm
Option B:	1.119 mm
Option C:	111.9 mm
Option D:	1119 mm
7.	If the resultant of the two equal forces is equal to either of them, then angle between the forces is
Option A:	30°
Option B:	60°
Option C:	90°
Option D:	120°
8.	Ratio of limiting force of friction and normal reaction is
Option A:	Coefficient of friction
Option B:	Angle of friction
Option C:	Sliding friction
Option D:	Coefficient of restitution
9.	The minimum Force required to keep a body of mass 30 kg in equilibrium on an inclined plane (plane is inclined 30° to horizontal), if the coefficient of Friction is 0.2 , is $----\cdots----$. (Force applied is parallel to inclined plane).
Option A:	198.124 N
Option B:	161.823 N
Option C:	96.176 N
Option D:	147.15 N
10.	A 2 m long ladder rests against a wall and makes an angle 30° with the horizontal. At the instant of slipping, the instantaneous center of rotation will be
Option A:	1.732 m from wall and 1 m above the floor
Option B:	1.732 m from wall and 4 m above the floor
Option C:	1.732 m from wall and 2 m above the floor
Option D:	1.732 m from wall and 3 m above the floor
11.	When body slides down an inclined surface, the acceleration of body is given by
Option A:	g
Option B:	$\mathrm{g} \sin \theta$
Option C:	$\mathrm{g} \cos \theta$
Option D:	$\mathrm{g} \tan \theta$
12.	During the flight of projectile, which of the following remains constant?
Option A:	Angle of projection
Option B:	Horizontal component of velocity
Option C:	Vertical component of velocity
Option D:	Sum of kinetic and potential energy
13.	A particle experiences constant acceleration for 25 s after starting from rest. If it travels a distance of S_{1} in the first 15 s and distance S_{2} in the next 10 s then,
Option A:	$S_{1}=1.78 S_{2}$

Option B:	$S_{2}=1.78 S_{1}$
Option C:	$S_{1}=S_{2}$
Option D:	$S_{2}=\frac{S_{1}}{0.78}$
14.	A person walks through the sides of a square field. Each side is 15 m long. Find the maximum magnitude of the displacement of the person in any time of interval.
Option A:	15 m
Option B:	$15 \sqrt{2} \mathrm{~m}$
Option C:	30 m
Option D:	7.5 m
15.	A particle dropped from a tower and it travels a distance of " y " in the first second. The distance travelled in the fourth second is
Option A:	7y
Option B:	$3.5 y$
Option C:	14 y
Option D:	y
16.	If stone is projected vertically up, its time of flight is
Option A:	Inversely proportion to its mass
Option B:	Proportional to its initial velocity
Option C:	Proportional to its mass
Option D:	Inversely proportional to its initial velocity
17.	Velocity-time curve for the body projected vertically upwards is a
Option A:	Straight line inclined to the time axis
Option B:	parabola
Option C:	ellipse
Option D:	curve
18.	A train passes over a 600 m long bridge. If the speed of the train is $30 / \mathrm{s}$ and the train takes 30 s to cross the bridge, the length of the train is \qquad
Option A:	900 m
Option B:	600 m
Option C:	150 m
Option D:	300 m
19.	The area under the speed -time graph gives the
Option A:	Change in displacement of the particle
Option B:	Change in Velocity of the particle
Option C:	Acceleration of the particle
Option D:	Momentum of particle
20.	The point at which the total area of a plane figure is assumed to be concentrated is called \qquad .

Option A:	Centre of gravity
Option B:	Central point
Option C:	Centroid
Option D:	Inertial point

Descriptive Section

Q 2	20 Marks
A	Solve any Two from three $2 \times 5=10 \mathrm{M}$
i.	Locate the centroid of the shaded area shown in the figure below. Figure-1
ii.	The guy wire of a pole is anchored by means of a bolt at a point P as shown in figure 2 . The force in the wire is 100 kN . Determine (i) the component of the force in the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions and (ii) the direction of the force. Figure-2
iii.	Figure 3 shows an angle bracket applied with three forces and couple of magnitude $40 \mathrm{~N}-\mathrm{m}$ at point A. (i) Find resultant of the system of forces. (ii) Locate the position of the line of action of the resultant force with reference to the lines PQ and QR .

Q 3	20 Marks
A	Solve any Two out of three from the following $2 * 5=10 \mathrm{Marks}$
i.	Water drops fall at regular interval from a tap which is 1.25 m above the ground. When the third drop leaving the tap, the $1^{\text {st }}$ the drop touches the ground. Find the position of the second drop below the tap at that instant. Figure 5
ii.	The motion of particle is defined by the realtion $x=3 t^{3}-18 t^{2}+26 t+8$, where x is the position expressed in meters and t is the time in seconds. Determine (i) time when the velocity is zero and (ii) the position and the total distance travelled when the acceleration becomes zero.
iii.	Two stones A and B are projected from the same point at 45° and 30° respectively, inclined to the horizontal. Find the ratio of the velocities of A and B if the maximum height reached by both is the same. (Refer the figure-6)
B	Solve any One 10 marks
i.	A force of 200 N is required to drive a body up an inclined plane of angle 15°, the force being parallel to the plane. If the angle of inclination of the plane is made 20°, the force

University of Mumbai

Examination 2020 under cluster 03 (Lead College: FCRIT)
Examinations Commencing from 22 ${ }^{\text {rd }}$ April 2021 to 30 th April 2021
Program: First Year Engineering (All Branches)
Curriculum Scheme: Rev2019 C Scheme
Examination: FE Semester I
Course Code: FEC104 and Course Name: Engineering Mechanics

Question Number	Correct Option (Enter either 'A' or ' \mathbf{B} or ' \mathbf{C}^{\prime} ' $\mathbf{r}^{\prime} \mathbf{D}$ ')
Q1.	B
Q2.	C
Q3.	A
Q4	B
Q5	B
Q6	C
Q7	D
Q8.	A
Q9.	C
Q10.	B
Q11.	B
Q12.	B
Q13.	B
Q14.	A
Q15.	B
Q16.	A
Q17.	D
Q18.	A
Q19.	C
Q20.	

