University of Mumbai

Examination 2020 under cluster 03 (Lead College: FCRIT)

Examinations Commencing from 22rd April 2021 to 30 th April 2021

Program: First Year Engineering (All Branches)

Curriculum Scheme: Rev2019 C Scheme

Examination: FE Semester I

Course Code: FEC104 and Course Name: Engineering Mechanics

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks		
1.	Equilibrium of a rigid body in statics refers to		
Option A:	Balance of forces in static condition		
Option B:	Balance of forces and moments in static condition		
Option C:	Balance of energy of body		
Option D:	Balance of inertia force and inertia moments		
2.	Kinematics of rigid body is .		
Option A:	Study of geometry of motion considering the cause of motion		
Option B:	Study of external force acting on it without considering the geometry of motion		
Option C:	Study of geometry of motion without considering the cause of motion		
Option D:	Finding the reaction forces and the moments at the supports		
3.	Resultant of the forces $F_1 = 30i + 20j$ and $F_2 = -20i + 10j$ is		
Option A: 31.62 N acting along 71.56° to the x-axis			
Option B:	B: 31.62 N acting along 18.56° to the x-axis		
Option C:	3100 N acting along 71.56° to the x-axis		
Option D:	31.62 N acting along 18.43° to the x-axis		
4.	Pushing or pulling of a vehicle with same magnitude of force along the same line		
	of action is an illustration of		
Option A:	Equilibrium		
Option B:	Principle of transmissibility		
Option C:	Newtons III law		
Option D:	: Newtons II law		
5.	A block of mass 30 kg is kept on a smooth inclined plane of 30° and is supported		
	by a force F acting parallel to the plane. The magnitude of force is		
Option A:	14.71 N		
Option B:	147.15 N		
Option C:	300 N		
Option D:	150 N		
6.	A rod PQ carries three loads of 40N, 70N, and 100 N at 30 mm, 90 mm and 160		
	mm respectively from point P. Neglecting weight of the rod, the position of		
	resultant isaway from point P.		

Option A:	11.19 mm		
Option B:	1.119 mm		
Option C:	111.9 mm		
Option D:	1119 mm		
7.	If the resultant of the two equal forces is equal to either of them, then angle		
	between the forces is .		
Option A:	30°		
Option B:	60°		
Option C:	90°		
Option D:	120°		
8.	Ratio of limiting force of friction and normal reaction is .		
Option A:	Coefficient of friction		
Option B:	: Angle of friction		
Option C:	Sliding friction		
Option D:	Coefficient of restitution		
9.	The minimum Force required to keep a body of mass 30 kg in equilibrium on an		
	inclined plane (plane is inclined 30° to horizontal), if the coefficient of Friction is		
	0.2, is (Force applied is parallel to inclined plane).		
Option A:	198.124 N		
Option B:	161.823 N		
Option C:	96.176 N		
Option D:	147.15 N		
10.	A 2 m long ladder rests against a wall and makes an angle 30° with the horizontal.		
	At the instant of slipping, the instantaneous center of rotation will be		
Option A:	1.732 m from wall and 1m above the floor		
Option B:	1.732 m from wall and 4 m above the floor		
Option C:	1.732 m from wall and 2 m above the floor		
Option D:	1./32 m from wall and 3 m above the floor		
11	When body glides down an inclined surface, the acceleration of body is given by		
11.	when body sides down an inclined surface, the acceleration of body is given by		
Option A [•]	σ.		
Option B:	$\sigma \sin \theta$		
Option C:	g cos Θ		
Option D:	$g \tan \theta$		
option D.			
12.	During the flight of projectile, which of the following remains constant?		
Option A:	Angle of projection		
Option B:	Horizontal component of velocity		
Option C:	Vertical component of velocity		
Option D:	Sum of kinetic and potential energy		
13.	A particle experiences constant acceleration for 25 s after starting from rest. If it		
	travels a distance of S_1 in the first 15 s and distance S_2 in the next 10 s then,		
Option A:	$S_1 = 1.78 S_2$		
*	1 2		

Option B:	$S_2 = 1.78 S_1$			
Option C:	$S_1 = S_2$			
Option D:	$S_{n} = \frac{S_{1}}{2\pi 2}$			
	2 0.78			
14.	A person walks through the sides of a square field. Each side is 15 m long. Find			
	the maximum magnitude of the displacement of the person in any time of interval.			
Option A:	15 m			
Option B:	$15\sqrt{2}$ m			
Option C:	30 m			
Option D:	7.5 m			
-				
15.	A particle dropped from a tower and it travels a distance of "y" in the first second. The distance travelled in the fourth second is			
Option A:	7y			
Option B:	3.5y			
Option C:	14y			
Option D:	У			
16				
<u> </u>	If stone is projected vertically up, its time of flight is			
Option A:	Inversely proportion to its mass			
Option B:	Proportional to its initial velocity			
Option C:	Proportional to its mass			
Option D:				
17	Velocity-time curve for the body projected vertically upwards is			
- / ·	a .			
Option A:	Straight line inclined to the time axis			
Option B:	parabola			
Option C:	ellipse			
Option D:	curve			
18.	A train passes over a 600 m long bridge. If the speed of the train is 30 /s and the train takes 30 s to cross the bridge, the length of the train is			
Option A:	900 m			
Option B:	600 m			
Option C:	150 m			
Option D:	300 m			
10				
<u>19.</u>	The area under the speed -time graph gives the			
Option A:	Change in displacement of the particle			
Option B:	Change in Velocity of the particle			
Option C:	Acceleration of the particle			
Option D:	Momentum of particle			
20.	The point at which the total area of a plane figure is assumed to be concentrated is called			

Option A:	Centre of gravity
Option B:	Central point
Option C:	Centroid
Option D:	Inertial point

Descriptive Section

Q 2	20 Marks
A	Solve any Two from three $2x5 = 10 M$
i.	Locate the centroid of the shaded area shown in the figure below. $y \rightarrow 0 0 \text{ mm} \rightarrow 0 0 \text{ mm} \rightarrow 0 \text{ Figure-1}$
ii.	The guy wire of a pole is anchored by means of a bolt at a point P as shown in figure 2. The force in the wire is 100 kN. Determine (i) the component of the force in the x,y, z directions and (ii) the direction of the force.
iii.	Figure 3 shows an angle bracket applied with three forces and couple of magnitude 40 N-m at point A.(i) Find resultant of the system of forces.(ii) Locate the position of the line of action of the resultant force with reference to the lines PQ and QR.

Q 3	20 Marks
_	
A	Solve any Two out of three from the following $2*5 = 10$ Marks
1.	Water drops fall at regular interval from a tap which is 1.25 m above the ground. When the third drop leaving the tap, the 1 st the drop touches the ground. Find the position of the second drop below the tap at that instant.
	Figure 5
ii.	The motion of particle is defined by the realtion $x = 3t^3 - 18t^2 + 26t + 8$, where x is the position expressed in meters and t is the time in seconds. Determine (i) time when the velocity is zero and (ii) the position and the total distance travelled when the acceleration becomes zero.
iii.	Two stones A and B are projected from the same point at 45° and 30° respectively, inclined to the horizontal. Find the ratio of the velocities of A and B if the maximum height reached by both is the same. (Refer the figure-6)
В	Solve any One 10 marks
i.	A force of 200 N is required to drive a body up an inclined plane of angle 15°, the force
	being parallel to the plane. If the angle of inclination of the plane is made 20°, the force

University of Mumbai Examination 2020 under cluster 03 (Lead College: FCRIT)

Examinations Commencing from 22rd April 2021 to 30 th April 2021

Program: First Year Engineering (All Branches) Curriculum Scheme: Rev2019 C Scheme

Examination: FE Semester I

Course Code: FEC104 and Course Name: Engineering Mechanics

Time: 2 hour

Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	В
Q2.	С
Q3.	А
Q4	В
Q5	В
Q6	С
Q7	D
Q8.	А
Q9.	С
Q10.	А
Q11.	В
Q12.	В
Q13.	В
Q14.	В
Q15.	А
Q16.	В
Q17.	А
Q18.	D
Q19.	А
Q20.	С