University of Mumbai

Examination 2020 under cluster __ (Lead College: ___

Examinations Commencing from $100^{\text {th }}$ April 2021 to $17^{\text {th }}$ April 2021
Program: Computer Engineering
Curriculum Scheme: Rev2019
Examination: SE Semester III(for Direct Second Year-DSE)
Course Code: CSC305 and Course Name: Computer Graphics
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Which one of the following is the primarily used input device?
Option A:	Keyboard
Option B:	Scanner
Option C:	Monitor
Option D:	Speaker
2.	The midpoint ellipse drawing algorithm uses ----------- to find the pixel points along the ellipse path
Option A:	8 -way symmetry
Option B:	4-way symmetry
Option C:	2-way symmetry
Option D:	6 - way symmetry
3.	Quality of the picture is
Option A:	directly proportional to the density of pixels on the screen.
Option B:	dependent on the size of a screen
Option C:	not proportional to the density of pixels on the screen
Option D:	not dependent on the number of pixels
4.	The aliasing effect can be minimized by
Option A:	decreasing resolution of the raster display
Option B:	By increasing slope of the line
Option C:	increasing resolution of the raster display.
Option D:	By decreasing slope of the line
5.	In DDA algorithm, if slope of the line is less than or equal to one $(\mathrm{m}<=1)$ then the next pixel point along the line path is calculated by
Option A:	Taking unit steps along the positive x direction and adding slope value to the previous y coordinate value
Option B:	Adding and subtracting slope value from the previous x and y coordinate value
Option C:	Taking unit steps along the positive x direction and y direction
Option D:	Taking unit steps along the positive x direction and subtracting slope value to the previous y coordinate value
6.	Which of the following is the correct representation to define 2D point using homogeneous coordinate [Hint: - (Xw, Yw, w)]
Option A:	$(0,0,0)$

Option B:	$(4,4,0)$
Option C:	(0,0,1)
Option D:	(1.5,1.8,0)
7.	If the scaling factors values of Sx and Sy = 1 then
Option A:	Size of an object remains same
Option B:	Size of an object is increased
Option C:	Size of an object is reduced
Option D:	It slants the shape of an object
8.	The negative values of ' θ ' gives
Option A:	Anticlockwise Rotation
Option B:	Clockwise Rotation
Option C:	Shearing Transformation
Option D:	Reflection
9.	When the 3D point ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) is reflected about the XY plane then new coordinates of the point are given by
Option A:	(-x, -y, z)
Option B:	($\mathrm{x},-\mathrm{y}, \mathrm{z}$)
Option C:	($\mathrm{y}, \mathrm{x}, \mathrm{z}$)
Option D:	(x,y, -z)
10.	In Cohen Sutherland line clipping algorithm, if Bit code for two endpoints of the line segment is 0101 and 1001 respectively then line is
Option A:	Partially visible
Option B:	Completely visible
Option C:	Completely Inside the clipping boundary
Option D:	Completely Outside the clipping boundary
11.	---------------------is known as generalized line clipping algorithm
Option A:	Liang Barsky line clipping algorithm
Option B:	Cohen Sutherland line clipping algorithm
Option C:	Digital Differential Analyzer algorithm
Option D:	Bresenham's line drawing algorithm
12.	\qquad defines where the object will be displayed on computer screen
Option A:	Window
Option B:	Viewport
Option C:	Frame buffer
Option D:	World coordinate system
13.	It is the process of changing position of an object along the circular path from one coordinate location to other
Option A:	Translation
Option B:	Rotation
Option C:	Scaling
Option D:	Reflection

14.	In 3 D translation, translation factors Tx , Ty , Tz are ------------- in to the original coordinates of the polygon
Option A:	Added
Option B:	Subtracted
Option C:	Multiplied
Option D:	Divided
15.	In 3D rotation about z - axis, the value of the z coordinate of new object
Option A:	is doubled
Option B:	zero
Option C:	remains same
Option D:	decreases
16.	The Surfaces of an object which are oriented away from the viewer are called as
Option A:	Back surfaces
Option B:	Front surfaces
Option C:	Top surfaces
Option D:	Side surfaces
17.	Consider equation of the plane, $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}=0$ If $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}>0$, then point ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
Option A:	lies in the background
Option B:	lies in the foreground
Option C:	lies anywhere
Option D:	lies on the plane
18.	In Z buffer algorithm -------------------------is used I. $\quad Z$ buffer II. Frame buffer III. Vector refresh buffer
Option A:	Only I
Option B:	Only II
Option C:	Only III
Option D:	Both I and II
19.	--------------------- figures are manipulated to appear as moving images
Option A:	Animation
Option B:	Rotation
Option C:	Translation
Option D:	Scaling
20.	It is a process that are applied in the animation evaluation and do not make permanent changes to the original object
Option A:	Facial animation
Option B:	Motion capture
Option C:	Deformation
Option D:	Character animation

Q2. (20 Marks)	
A	Solve any Two \quad 5 marks each
i.	Rasterize the line segment using DDA line drawing algorithm. The two endpoint coordinates of the line segment are P1(0,0) and P2(5, 2)
ii.	Scale the square ABCD with coordinates A (0,0), B (5,0), C (5,5), D (0,5) by 3 units in x direction and 4 units in y direction
iii.	Define the following terms with example a) Scan Conversion b) Frame buffer
B	Solve any One
i.	Clip the line segment using Cohen Sutherland Line clipping Algorithm, The Coordinates of the line segment are P1(-1, 5) and P2(3, 8) and coordinates of the window boundaries are (Xwmin, Ywmin) = (-3, 1) and (Xwmax, Ywmax) $=(2,6)$
ii.	What is visible surface detection? Explain Area subdivision method with example

Q3. (20 Marks)	
A	Solve any Two
i.	What is homogeneous transformation matrix for 2D. Write homogeneous transformation matrix for Translation, Rotation and Scaling in terms of $\mathrm{P}^{\prime}=\mathrm{P}^{*} \mathrm{~T}$ (Where $\mathrm{P}=$ Original object matrix, and $\mathrm{P}^{\prime}=$ New object matrix and $\mathrm{T}=2 \mathrm{D}$ transformation matrix)
ii.	What is an Animation? Write and explain principles of animation?
iii.	A point has coordinates in the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ direction i.e., $\mathrm{P}(4,5,6)$. The translation is done in the x-direction and y direction by 2 units and 5 units in the z- direction. Shift the point and find the new coordinates of the point.
B	Solve any One
i.	What is World Coordinate System (WCS) and Physical Device Coordinate System (PDCS)? Obtain viewing transformation matrix to map WCS on to PDSCS
ii.	Derive and explain midpoint ellipse drawing algorithm

University of Mumbai

Examination 2020 under cluster \qquad (Lead College: \qquad)
Examinations Commencing from $10{ }^{\text {th }}$ April 2021 to $17^{\text {th }}$ April 2021
Program: Computer Engineering
Curriculum Scheme: Rev2019
Examination: SE Semester III(for Direct Second Year-DSE) Course Code: CSC305 and Course Name: Computer Graphics

Question Number	Correct Option (Enter either 'A' or ' \mathbf{B} ' or ' C ' or ' D ')
Q1.	A
Q2.	B
Q3.	A
Q4	C
Q5	A
Q6	C
Q7	A
Q8.	B
Q9.	D
Q10.	D
Q11.	A
Q12.	B
Q13.	B
Q14.	A
Q15.	C
Q16.	A
Q17.	B
Q18.	D
Q19.	A
Q20.	C

Q. $2 \mathrm{~A}-\mathrm{i}$

The coordinates of pixel points on the line segment are P1(0,0), (1, 0), (2, 1), (3, 1), (4, 2), P2(5, 2)
Q. 2 A-ii The new coordinates of the square ABCD after scaling operation are $A^{\prime}(0,0), B^{\prime}(15,0), C^{\prime}(15,20), D^{\prime}(0,20)$
Q. 2 B-i The clipping coordinates of the line segment are $P 1^{\prime}(1,5)$ and $P 2^{\prime}(1 / 3,6)$
Q. 3 A-iii The new coordinates of the point after translation are $P^{\prime}(6,7,11)$

