University of Mumbai

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Computer Engineering

Curriculum Scheme: Rev 2019

Examination: SE Semester III (For Direct Second Year-DSE)

Course Code: CSC302 and Course Name: Discrete Structures and Graph Theory

Time: 2 hour

Max. Marks: 80

01.	Choose the correct option for following questions. All the Questions are		
	compulsory and carry equal marks.		
1.	What is a negation of the following statement "8 is even & -11 is negative"?		
Option A:	8 is even & -11 is not negative		
Option B:	8 is odd & -11 is not negative		
Option C:	8 is even or -11 is not negative		
Option D:	8 is odd or -11 is not negative		
2.	The number of elements in the $P(X)$ of $X = \{\{a\}, \{b\}, \{c,d\}, \{e,f\}\}$ is		
Option A:	12		
Option B:	8		
Option C:	9		
Option D:	16		
3.	If two sets A and B have no common elements between them, then such sets		
	are known as ?		
Option A:	Disjoint		
Option B:	Intersection		
Option C:	Complement		
Option D:	Union		
4.	Which of the following is not the example of a partial order relation?		
Option A:	$R=\{(a,b) \mid a,b \in Z, a \le b\}$		
Option B:	$R=\{(a,b) \mid a,b \in Z, a/b \in Z\}$		
Option C:	$R = \{(a,b) \mid a,b \in P(X), a \subseteq b\}$		
Option D:	$R=\{(a,b) a, b \in \mathbb{Z}, a < b\}$		
5.	Let a set $S = \{1, 2, 3, 4, 6, 9, 12, 18, 24\}$ and R be the partial order relation of		
	divisibility. Number of edges in its Hasse diagram are		
Option A:	10		
Option B:	11		
Option C:	9		
Option D:	8		
6.	Domain for which the functions defined by $f(x) = 2x^2-1$ & $g(x) = 5-x$ are equal to		
Option A:	{2, 3/2}		
Option B:	{-2, -3/2}		

Option C:	$\{2, 3/2\}$
Option D:	$\{-2, 3/2\}$
7.	Let G be a simple undirected graph. There are some odd degree vertices. If a node
	x is added to G and made it adjacent to each odd degree vertex of G, then the
	resultant graph will be
Option A:	regular
Option B:	Euler
Option C:	Complete
Option D:	Hamiltonian
8.	A sufficient condition that a triangle T be a right triangle is that $a^2 + b^2 = c^2$. An
	equivalent statement is
Option A:	T is a right triangle unless $a^2 + b^2 = c^2$.
Option B:	If I is a right triangle then $a^2 + b^2 = c^2$.
Option C:	$11 a^2 + b^2 = c^2 \text{ then } 1 \text{ is a right triangle}$
Option D:	1 is a right triangle only if $a^2 + b^2 = c^2$.
0	How many strings of length & sither basis with 2 mans or and with A man?
<u> </u>	How many strings of length 8 either begin with 2 zeros of end with 4 ones?
Option A:	
Option B:	
Option C:	
Option D.	
10	$I \text{ et } A = \{a \ b \ c \ d\}$
10.	$R = \{(a, a), (b, c), (c, b), (d, a)\} & S = \{(a, d), (c, b), (b, a), (c, d)\}$
	What is the composition of relations RoS?
Option A:	$\{(a, a), (a, b), (c, c), (a, c)\}$
Option B:	$\{(a,a), (b,a), (c,c), (c,a)\}$
Option C:	$\{(a,d), (b,b), (c,a), (b,d), (d,d)\}$
Option D:	$\{(a,d), (b,b), (c,a), (d,d)\}$
·	
11.	What is a length of the walk of a graph?
Option A:	Total number of edges in a graph
Option B:	The number of edges in a walk
Option C:	Total number of vertices in a graph
Option D:	The number of vertices in walk
12.	Which of the following statement is not a tautology?
Option A:	$p \to (p \lor q)$
Option B:	$(p \land q) \to (p \to q)$
Option C:	$(p \to q) \to q$
Option D:	$(p \land q) \rightarrow (p \lor q)$
10	
13.	Which of the following Poset is a Distributed Lattice?
Option A:	
Option B:	
Option C:	
Option D:	D ₄₀

14.	Which of the following functions f: $Z X Z \rightarrow Z$ is not onto?
Option A:	f(a, b) = a - b
Option B:	f(a, b) = a + b
Option C:	f(a, b) = b
Option D:	f(a, b) = a
15.	Let $A = \{0, 1, 2, 3, 4, 5\}$ a group under the operation of addition modulo 6 i.e. +
	What is a subgroup generated by the element 2?
Option A:	{0.1.2.3.4.5.6}
Option B:	{0.2.4}
Option C:	$\{0, 1, 4, 6\}$
Option D [.]	$\{2,4\}$
option D.	
16	If there are 25 rooms in a girls' hostel what is the minimum number of girls
10.	required so that at least 5 are living in one room?
Option A [.]	85
Option B:	101
Option C:	100
Option D:	90
option D.	
17	What is the identity element In the group $G = \{2, 4, 6, 8\}$ under multiplication
17.	modulo 10?
Option A [•]	5
Option B:	6
Option C:	12
Option D:	9
18	Determine the number of edges in a graph with 6 nodes which contains 2 of
10.	degree 5 2 of degree 3 & 2 of degree 2
Option A [•]	12
Option B:	10
Option C:	9
Option D:	11
option D.	
19	For which of the following hasse diagram is drawn?
Option A [•]	lattice
Option B:	nartially ordered set
Option C.	sublattice
Option D:	boolean algebra
option D.	
20	If 35 books in a Department contain total 56351 pages, then one of the books has
20.	atleast nages
Ontion A.	1611
Ontion B.	1610
Option C.	1598
Option D	1612
	1012

Q2.	Solve any Four questions out of Six.5 marks ea	ch
(20 Marks)		
А	Let A={i, j, k, l, m} $MR = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ Find the transitive closure of it using Warshall's algorithm.	
В	Prove by mathematical induction that $2+5+8++(3n-1)=n(3n+1)/2$	
С	Explain a distributive lattice with the suitable example. Prove that in a distributive lattice, the complement of any element is unique.	
D	What is a bijective function? Find inverse of the following bijection: f: $R \rightarrow R$ defined by $f(x) = (1-2x)/3$	
Е	Verify whether $((PVQ) \Lambda_{\Box} (P \Lambda_{\Box} Q V_{\Box} R))V(P \Lambda_{\Box} Q)V(P \Lambda_{\Box} R) $ is tautolo	ogy.
F	Determine whether following graphs are isomorphic. Justify your answer a a a a G_1 G_2	

Q3.	Solve any Two Questions out of Three .	10 marks each
(20 Marks)		
А	 Explain the following terms with the suitable example. i) Hamming Distance ii) Monoid iii) Cyclic Group iv) group code v) Ring 	
В	i) What is an adjacency matrix & incidence matrix? Experimental suitable example.	plain both with the

University of Mumbai

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Computer Engineering

Curriculum Scheme: Rev 2019

Examination: SE Semester III (DSE)

Course Code: CSC302 and Course Name: Discrete Structures and Graph Theory Time: 2 hour Max. Marks: 80

=

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	D
Q2.	D
Q3.	А
Q4	D
Q5	В
Q6	D
Q7	В
Q8.	С
Q9.	С
Q10.	В
Q11.	В
Q12.	С
Q13.	В
Q14.	С
Q15.	В
Q16.	В
Q17.	В
Q18.	В
Q19.	В
Q20.	A

MR= W0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$W_{1} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$
W2=	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$W_{3} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$
W4=	$ \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} $	$W_{5} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 &$

1 mark for each matrix $(W_1 \text{ to } W_5)$

B)

Q. 2 A)

Basis step (for n=1)	2 marks
Inductive step (show that $p(k) - p(k+1)$)	3 marks

C)

Define a distributive lattice.	1 mark
Give the suitable example.	2 marks
Prove that the complement of each element is unique	2 marks

- D) Define a bijective function.1 markFind the inverse of a given function4 marks
- E) Explain the term tautology1 markVerify whether given expression is a tautology using laws of logic4 marks
- F) Definition of the isomorphic graphs.

2 | Page

2 marks

Determine whether given graphs are isomorphic or not	3 marks
(graphs are not isomorphic)	
Q. 3 A)	
Explain each term	1 mark each
Give the suitable example of each term	1 mark each
B) i) Explain the terms adjacency matrix & incidence matrix	2 mark
Suitable example with the graph for each of the matrices.	3 marks
ii) Explain what is Eulerian path & a circuit in the graph.	1 mark
for Graph G ₁	2 marks
The degree of each vertex is even. \therefore There is an Eulerian circuit in a graph. One Eulerian circuit is $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 3 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 1$ \therefore The graph is Eulerian.	
For Graph G ₂	2 marks
Degree of each vertex is odd. There is no Eulerian circuit & no Eulerian path. The graph is not Eulerian.	
C)	
Explanation of the term group	2 marks
composition table w.r.t. $+_{15}$	2 marks
+15 0 3 6 9 12	
0 0 3 6 9 12	
3 3 6 9 12 0	
6 6 9 12 0 3	
9 9 12 0 3 6	
12 12 0 3 6 9	
Show that it is an abelian group	2 marks
Inverses of all the elements	2 marks

Determine whether it is a cyclic group

2 marks