University of Mumbai

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)

Examinations Commencing from 10 ${ }^{\text {th }}$ April 2021 to 17 $7^{\text {th }}$ April 2021
Program: Computer Engineering
Curriculum Scheme: Rev 2019
Examination: SE Semester III (For Direct Second Year-DSE)
Course Code: CSC302 and Course Name: Discrete Structures and Graph Theory
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.
1.	What is a negation of the following statement " 8 is even \& -11 is negative"?
Option A:	8 is even \& -11 is not negative
Option B:	8 is odd \& -11 is not negative
Option C:	8 is even or -11 is not negative
Option D:	8 is odd or -11 is not negative
2.	The number of elements in the $\mathrm{P}(\mathrm{X})$ of $\mathrm{X}=\{\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{e}, \mathrm{f}\}\}$ is
Option A:	12
Option B:	8
Option C:	9
Option D:	16
3.	If two sets A and B have no common elements between them, then such sets are known as?
Option A:	Disjoint
Option B:	Intersection
Option C:	Complement
Option D:	Union
4.	Which of the following is not the example of a partial order relation?
Option A:	$\mathrm{R}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}, \mathrm{a} \leq \mathrm{b}\}$
Option B:	$\mathrm{R}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}, \mathrm{a} / \mathrm{b} \in \mathrm{Z}\}$
Option C:	$\mathrm{R}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}, \mathrm{b} \in \mathrm{P}(\mathrm{X}), \mathrm{a} \subseteq \mathrm{b}\}$
Option D:	$\mathbf{R}=\{(\mathbf{a}, \mathbf{b}) \mid \mathbf{a}, \mathbf{b} \mathbf{C Z}, \mathbf{a}<\mathbf{b}\}$
5.	Let a set $S=\{1,2,3,4,6,9,12,18,24\}$ and R be the partial order relation of divisibility. Number of edges in its Hasse diagram are
Option A:	10
Option B:	11
Option C:	9
Option D:	8
6.	Domain for which the functions defined by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{2}-1 \& \mathrm{~g}(\mathrm{x})=5-\mathrm{x}$ are equal to
Option A:	\{2, 3/2\}
Option B:	$\{-2,-3 / 2\}$

Option C:	\{2, 3/2\}
Option D:	\{-2,3/2\}
7.	Let G be a simple undirected graph. There are some odd degree vertices. If a node x is added to G and made it adjacent to each odd degree vertex of G , then the resultant graph will be
Option A:	regular
Option B:	Euler
Option C:	Complete
Option D:	Hamiltonian
8.	A sufficient condition that a triangle T be a right triangle is that $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$. An equivalent statement is
Option A:	T is a right triangle unless $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$
Option B:	If T is a right triangle then $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$
Option C:	If $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$ then T is a right triangle
Option D:	T is a right triangle only if $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$.
9.	How many strings of length 8 either begin with 2 zeros or end with 4 ones?
Option A:	80
Option B:	42
Option C:	76
Option D:	64
10.	$\begin{aligned} & \operatorname{Let} \mathrm{A}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\ & \mathrm{R}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{c}),(\mathrm{c}, \mathrm{~b}),(\mathrm{d}, \mathrm{a})\} \& \mathrm{~S}=\{(\mathrm{a}, \mathrm{~d}),(\mathrm{c}, \mathrm{~b}),(\mathrm{b}, \mathrm{a}),(\mathrm{c}, \mathrm{~d})\} \end{aligned}$ What is the composition of relations RoS?
Option A:	$\{(\mathrm{a}, \mathrm{a}),(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{c}),(\mathrm{a}, \mathrm{c})$ \}
Option B:	$\{(\mathbf{a}, \mathbf{a}),(\mathbf{b}, \mathbf{a}),(\mathbf{c}, \mathbf{c}),(\mathbf{c}, \mathbf{a})\}$
Option C:	$\{(\mathrm{a}, \mathrm{d}),(\mathrm{b}, \mathrm{b}),(\mathrm{c}, \mathrm{a}),(\mathrm{b}, \mathrm{d}),(\mathrm{d}, \mathrm{d})\}$
Option D:	$\{(\mathrm{a}, \mathrm{d}),(\mathrm{b}, \mathrm{b}),(\mathrm{c}, \mathrm{a}),(\mathrm{d}, \mathrm{d})\}$
11.	What is a length of the walk of a graph?
Option A:	Total number of edges in a graph
Option B:	The number of edges in a walk
Option C:	Total number of vertices in a graph
Option D:	The number of vertices in walk
12.	Which of the following statement is not a tautology?
Option A:	$p \rightarrow(p \vee q)$
Option B:	$(p \wedge q) \rightarrow(p \rightarrow q)$
Option C:	$(p \rightarrow q) \rightarrow q$
Option D:	$(p \wedge q) \rightarrow(p \vee q)$
13.	Which of the following Poset is a Distributed Lattice?
Option A:	D_{50}
Option B:	D_{30}
Option C:	D_{20}
Option D:	D_{40}

14.	Which of the following functions $\mathrm{f}: \mathrm{Z} \mathrm{X} \mathrm{Z} \rightarrow \mathrm{Z}$ is not onto?
Option A:	$\mathrm{f}(\mathrm{a}, \mathrm{b})=\mathrm{a}-\mathrm{b}$
Option B:	$f(a, b)=a+b$
Option C:	$\mathbf{f}(\mathbf{a}, \mathbf{b})=\|\mathbf{b}\|$
Option D:	$\mathrm{f}(\mathrm{a}, \mathrm{b})=\mathrm{a}$
15.	Let $\mathrm{A}=\{0,1,2,3,4,5\}$ a group under the operation of addition modulo 6 i.e. $+_{6}$ What is a subgroup generated by the element 2 ?
Option A:	\{0,1,2,3,4,5,6\}
Option B:	\{0,2,4\}
Option C:	\{0, $1,4,6\}$
Option D:	$\{2,4\}$
16.	If there are 25 rooms in a girls' hostel, what is the minimum number of girls required so that at least 5 are living in one room?
Option A:	85
Option B:	101
Option C:	100
Option D:	90
17.	What is the identity element In the group $G=\{2,4,6,8)$ under multiplication modulo 10?
Option A:	5
Option B:	6
Option C:	12
Option D:	9
18.	Determine the number of edges in a graph with 6 nodes which contains 2 of degree 5,2 of degree $3 \& 2$ of degree 2 .
Option A:	12
Option B:	10
Option C:	9
Option D:	11
19.	For which of the following, hasse diagram is drawn?
Option A:	lattice
Option B:	partially ordered set.
Option C:	sublattice
Option D:	boolean algebra
20.	If 35 books in a Department contain total 56351 pages, then one of the books has atleast pages.
Option A:	1611
Option B:	1610
Option C:	1598
Option D:	1612

$\begin{gathered} \text { Q2. } \\ \text { (20 Marks) } \end{gathered}$	Solve any Four questions out of Six. 5 marks each
A	Let $A=\{i, j, k, 1, m\}$ $M R=\left\{\begin{array}{llllll} 1 & 0 & 1 & 1 & 0 \\ & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{array}\right]$ Find the transitive closure of it using Warshall's algorithm.
B	Prove by mathematical induction that $2+5+8+\ldots \ldots+(3 n-1)=n(3 n+1) / 2$
C	Explain a distributive lattice with the suitable example. Prove that in a distributive lattice, the complement of any element is unique.
D	What is a bijective function? Find inverse of the following bijection: $f: R \rightarrow R$ defined by $f(x)=(1-2 x) / 3$
E	Verify whether $\left((\mathrm{PVQ}) \Lambda_{\eta}\left({ }_{\eta} \mathrm{P} \Lambda_{(}\left(\mathrm{Q}^{\mathrm{Q}} \mathrm{\eta} \mathrm{R}\right)\right) \mathrm{V}\left({ }_{\eta} \mathrm{P} \Lambda_{\eta} \mathrm{Q}\right) \mathrm{V}\left({ }_{\eta} \mathrm{P} \Lambda_{\eta} \mathrm{R}\right)\right.$ is tautology.
F	Determine whether following graphs are isomorphic. Justify your answer.

Q3. (20 Marks)	Solve any Two Questions out of Three .	10 marks each
	Explain the following terms with the suitable example. i) ii)\quadHamming Distance Monoid	
A	iii) Cyclic Group iv) vroup code ving	
B	i)What is an adjacency matrix \& incidence matrix? Explain both with the suitable example.	

ii) What is Eulerian path \& a circuit? Determine which of the following	
graphs consist of Eulerian path and/or a circuit.	
C	What is a group? Let $\mathrm{S}=\{0,3,6,9,12\}$ i)Prepare the composition table w.r.t. the operation of addition modulo 15. ii) Show that it is an abelian group. iii) iv) Find the inverses of all the elements. Whether it is a cyclic group?

University of Mumbai

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)

Examinations Commencing from 10 ${ }^{\text {th }}$ April 2021 to 17 $^{\text {th }}$ April 2021
Program: Computer Engineering
Curriculum Scheme: Rev 2019
Examination: SE Semester III (DSE)
Course Code: CSC302 and Course Name: Discrete Structures and Graph Theory

Question Number	Correct Option (Enter either ' A ' or ' B ' or ' C^{\prime} or 'D')
Q1.	D
Q2.	D
Q3.	A
Q4	D
Q5	B
Q6	D
Q7	B
Q8.	C
Q9.	C
Q10.	B
Q11.	B
Q12.	C
Q13.	B
Q14.	C
Q15.	B
Q16.	B
Q17.	B
Q18.	B
Q19.	B
Q20.	A

Q. 2 A) 1 mark for each matrix $\left(W_{1}\right.$ to $\left.W_{5}\right)$

$$
\begin{aligned}
& \mathrm{W}_{0}=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & Q & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & Q & 1 & 1
\end{array}\right] \quad W_{1}=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] \\
& \mathrm{W}_{2}=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] \\
& W_{3}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 \\
0 & Q & 0 & 1 & 1
\end{array}\right] \\
& W_{4}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right] \\
& \mathrm{W}_{5}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

B)

Basis step (for $\mathrm{n}=1$) 2 marks
Inductive step (show that $\mathrm{p}(\mathrm{k}) \rightarrow \mathrm{p}(\mathrm{k}+1)$) 3 marks

C)

$$
\begin{array}{lc}
\text { Define a distributive lattice. } & 1 \text { mark } \\
\text { Give the suitable example. } & 2 \text { marks } \\
\text { Prove that the complement of each element is unique } & 2 \text { marks }
\end{array}
$$

D) Define a bijective function.
E) Explain the term tautology
F) Definition of the isomorphic graphs. (graphs are not isomorphic)

Q. 3 A)

Explain each term
Give the suitable example of each term
B) i) Explain the terms adjacency matrix \& incidence matrix

Suitable example with the graph for each of the matrices.
3 marks
ii) Explain what is Eulerian path \& a circuit in the graph.

The degree of each vertex is even.
\therefore There is an Eulerian circuit in a graph.
One Eulerian circuit is $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 3 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 1$
\therefore The graph is Eulerian.
For Graph G_{2}
2 marks
Degree of each vertex is odd.
\therefore There is no Eulerian circuit \& no Eulerian path. The graph is not Eulerian.

C)

Explanation of the term group
composition table w.r.t. ${ }_{15}$

+15	0	3	6	9	12
0	0	3	6	9	12
3	3	6	9	12	0
6	6	9	12	0	3
9	9	12	0	3	6
12	12	0	3	6	9

Show that it is an abelian group

