University of Mumbai

Examination 2021 under cluster 5 (Lead College: APSIT)

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Bachelor of Engineering

Curriculum Scheme: Electronics & Telecommunication (Rev2019 'C' Scheme)

Examination: DSE Semester III

Course Code: ECC305 and Course Name: Electronic Instrumentation & Control Systems

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.	
1.	Poles are those values of s which makes	
Option A:	Numerator of transfer function=0	
Option B:	Numerator of transfer function=1	
Option C:	Denominator of transfer function=0	
Option D:	Denominator of transfer function =1	
2.	Megger is used to measure	
Option A:	Unknown Resistance of Low value	
Option B:	Unknown Resistance of High value	
Option C:	Unknown Capacitance of Low value	
Option D:	Unknown Capacitance of High value	
3.	Following is the phase angle for the factor $(1+j\omega/3)$	
Option A:	$Tan^{-1} 3/\omega$	
Option B:	$\operatorname{Tan}^{-1} \omega/3$	
Option C:	$-\mathrm{Tan}^{-1}\omega/3$	
Option D:	$-Tan^{-1} 3/\omega$	
4.	In a bode magnitude plot, which one of the following slopes would be exhibited	
	at high frequencies by a 4th order all-pole system?	
Option A:	-80 dB/decade	
Option B:	-40 dB/decade	
Option C:	40 dB/decade	
Option D:	80 dB/decade	
5.	When the number of poles is equal to the number of zeroes, how many branches	
	of root locus tends towards infinity?	
Option A:	0	
Option B:	1	
Option C:	2	
Option D:	3	
6.	The unknown capacitance of Schering bridge is given by	
Option A:	Cx=C2R4	

	R3	
Option B:	$Cx=R\frac{2R4}{R3}$	
Option C:	$\begin{array}{c} Cx = R \underline{2C4} \\ C3 \end{array}$	
Option D:	$Cx = R \frac{2C3}{C4}$	
7.	For the given system the poles and zeros are $G(s) = \frac{s(s+1)}{(s+3)(s+4)}$	
Option A:	P=1, Z=3,4	
Option B:	P=3,4, Z=0,1	
Option C:	P=-3,-4, Z=0,-1	
Option D:	P=-3,-4, Z=-1	
8.	The forward path transfer function of a unity feedback system is given by	
	$(s) = \frac{100}{(s^2 + 10s + 100)}$. The frequency response of this system will exhibit the	
	resonance peak at:	
Option A:	10 rad/sec	
Option B:	8.66 rad/sec	
Option C:	7.07 rad/sec	
Option D:	5 rad/sec	
0		
9.	The phase angle for the open loop transfer function $G(s)H(s) = 5$ s(s+1)(s+3)	
Option A:	$\phi = -90^{\circ} - \tan^{-1}\omega - \tan^{-1}\omega/3$	
Option B:	$\phi = -90^{\circ} - \tan^{-1}\omega - \tan^{-1}\omega/5$	
Option C:	$\phi = -90^{\circ} - \tan^{-1}\omega - \tan^{-1}3\omega$	
Option D:	$\phi = -90^{\circ} - \tan^{-1}\omega - \tan^{-1}5\omega$	
10.	The place where the loci meet while moving to or from infinity is called	
Option A:	Centroid	
Option B:	Intersection with imaginary axis	
Option C:	Root point	
Option D:	Breakaway point	
11.	Consider the open loop transfer function $G(s) = \frac{K(s+6)}{(s+3)(s+5)}$.	
	In the root locus diagram the centroid will be located at:	
Option A:	-4	
Option B:	-1	
Option C:	-2	
Option D:	-5	
12.	Attenuation, amplification and filtering is done by	
Option A:	Signal conditioner	
Option B:	A/D converter	
Option C:	Display systems	

Option D:	Transducer	
13	For Nyquist contour, the size of radius is	
$\frac{15}{\text{Option } \mathbf{A}}$		
Option B:		
Option C:	1	
Option D:		
Option D.		
14.	Kelvin's double bridge is a modified Wheatstone's bridge which consider	
Option A:	Galvanometer error	
Option B:	Contact Resistance	
Option C:	High Resistance	
Option D:	Battery error	
		
15.	The number of branches terminating at infinity is given by , where P	
	is number of open loop poles and Z is number of open loop zeros.	
Option A:	P+Z	
Option B:	P-Z	
Option C:	P*Z	
Option D:	P/Z	
16.	The breakaway point calculated mathematically	
Option A:	Does not lie on root locus	
Option B:	May or may not lie on root locus	
Option C:	Always lie on root locus	
Option D:	Lies on no root locus area only.	
17	The polar plot of the open loop transfer function of a feedback control system	
17.	intersects the real axis at -2. The gain margin of the system is	
Option A:	-5 dB	
Option B:	0 dB	
Option C:		
Option D:	40 dB	
Option D.		
18.	The bridge is balanced when	
Option A:	Detector or galvanometer voltage is infinity	
Option B:	Detector or galvanometer current is zero	
Option C:	Detector or galvanometer voltage is zero	
Option D:	Detector or galvanometer current is infinity	
10		
19.	The polar plot of a transfer function passes through the critical point (-1,0). Gain	
Ontion A:		
Option D:		
Option B:	1 UD 100 dD	
Option C:	I IVU UD	
Option D:		
20.	is an undesired phenomenon	
Option A:	Accuracy	
Option B:	Precision	
Option C:	Hysterisis	
Option D:	Sensitivity	

Q2.	Answer the following :	
А	Solve any Two 5 marks each	
i.	Explain in detail the components of a generalized measurement system with the help of block diagram.	
ii.	List and explain all the general rules for constructing root locus.	
iii.	What is the relationship between frequency domain specifications and time	
	domain specifications?	
В	Solve any One 10 marks each	
i.	State the advantages of Kelvin's double bridge over Wheatstone bridge and	
	derive expression for finding unknown resistance using Kelvin's double	
	bridge.	
ii.	Draw the polar plot for the given system	
	G(s)H(s) = 100	
	$s^{2}(s+2)(s+4)(s+8)$	

Q3.	Answer the following :	
А	Solve any Two 5 marks each	
i.	Differentiate between Accuracy and Precision.	
ii.	Explain in detail one bridge circuit used for measuring inductance.	
iii.	Find the intersection points with imaginary axis for the given system	
	G(s)H(s) = k	
	s(s+3)(s+6)	
В	Solve any One 10 marks each	
i.	Sketch the root locus for the given system (draw it on normal paper)	
	G(s)H(s) = k	
	$(s+2)^3$	
ii.	List the magnitude plot and phase plot table for the given system:	
	G(s)H(s) = 0.75(1+0.2s)	
	s(1+0.5s)(1+0.1s)	

University of Mumbai

Examination 2021 under cluster 5 (Lead College: APSIT)

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Bachelor of Engineering

Curriculum Scheme: Electronics & Telecommunication (Rev2019 'C' Scheme)

Examination: DSE Semester III

Course Code: ECC305 and Course Name: Electronic Instrumentation & Control Systems Time: 2 hour Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	С
Q2.	В
Q3.	В
Q4.	А
Q5.	А
Q6.	А
Q7.	С
Q8.	А
Q9.	А
Q10.	D
Q11.	С
Q12.	А
Q13.	D
Q14.	В
Q15.	В
Q16.	В
Q17.	С
Q18.	В
Q19.	А
Q20.	С