University of Mumbai

Examination 2021 under cluster 5 (Lead College: APSIT)
 Examinations Commencing from 10 ${ }^{\text {th }}$ April 2021 to $17^{\text {th }}$ April 2021
 Program: Bachelor of Engineering
 Curriculum Scheme: Electronics \& Telecommunication (Rev2019 'C'Scheme)
 Examination: DSE Semester III
 Course Code: ECC305 and Course Name: Electronic Instrumentation \& Control Systems

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.
1.	Poles are those values of s which makes
Option A:	Numerator of transfer function $=0$
Option B:	Numerator of transfer function $=1$
Option C:	Denominator of transfer function $=0$
Option D:	Denominator of transfer function $=1$
2.	Megger is used to measure
Option A:	Unknown Resistance of Low value
Option B:	Unknown Resistance of High value
Option C:	Unknown Capacitance of Low value
Option D:	Unknown Capacitance of High value
3.	Following is the phase angle for the factor $(1+\mathrm{j} \omega / 3)$
Option A:	Tan ${ }^{-1} 3 / \omega$
Option B:	Tan ${ }^{-1} \omega / 3$
Option C:	- Tan ${ }^{-1} \omega / 3$
Option D:	- -Tan ${ }^{-1} 3 / \omega$
4.	In a bode magnitude plot, which one of the following slopes would be exhibited at high frequencies by a 4th order all-pole system?
Option A:	$-80 \mathrm{~dB} /$ decade
Option B:	$-40 \mathrm{~dB} /$ decade
Option C:	$40 \mathrm{~dB} /$ decade
Option D:	$80 \mathrm{~dB} /$ decade
5.	When the number of poles is equal to the number of zeroes, how many branches of root locus tends towards infinity?
Option A:	0
Option B:	1
Option C:	2
Option D:	3
O.	
Option A:	The unknown capacitance of Schering bridge is given by

	R3
Option B:	$\frac{\mathrm{Cx}=\mathrm{R} 2 \mathrm{R} 4}{\mathrm{R} 3}$
Option C:	$\mathrm{Cx}=\frac{\mathrm{R} 2 \mathrm{C} 4}{\mathrm{C} 3}$
Option D:	$\mathrm{Cx}=\frac{\mathrm{R} 2 \mathrm{C} 3}{\mathrm{C} 4}$
7.	For the given system the poles and zeros are $G(s)=\frac{s(s+1)}{(s+3)(s+4)}$
Option A:	$\mathrm{P}=1, \mathrm{Z}=3,4$
Option B:	$\mathrm{P}=3,4, \mathrm{Z}=0,1$
Option C:	$\mathrm{P}=-3,-4, \mathrm{Z}=0,-1$
Option D:	$\mathrm{P}=-3,-4, \mathrm{Z}=-1$
8.	The forward path transfer function of a unity feedback system is given by $(s)=\frac{100}{\left(s^{2}+10 s+100\right)}$. The frequency response of this system will exhibit the resonance peak at:
Option A:	$10 \mathrm{rad} / \mathrm{sec}$
Option B:	$8.66 \mathrm{rad} / \mathrm{sec}$
Option C:	$7.07 \mathrm{rad} / \mathrm{sec}$
Option D:	$5 \mathrm{rad} / \mathrm{sec}$
9.	The phase angle for the open loop transfer function $G(s) H(s)=\frac{5}{s(s+1)(s+3)}$
Option A:	$\phi=-90^{\circ}-\tan ^{-1} \omega-\tan ^{-1} \omega / 3$
Option B:	$\phi=-90^{\circ}-\tan ^{-1} \omega-\tan ^{-1} \omega / 5$
Option C:	$\phi=-90^{\circ}-\tan ^{-1} \omega-\tan ^{-1} 13 \omega$
Option D:	$\phi=-90^{0}-\tan ^{-1} \omega-\tan ^{-1} 5 \omega$
10.	The place where the locii meet while moving to or from infinity is called
Option A:	Centroid
Option B:	Intersection with imaginary axis
Option C:	Root point
Option D:	Breakaway point
11.	Consider the open loop transfer function $G(s)=\frac{K(s+6)}{(s+3)(s+5)}$ In the root locus diagram the centroid will be located at:
Option A:	-4
Option B:	-1
Option C:	-2
Option D:	-3
12.	Attenuation, amplification and filtering is done by
Option A:	Signal conditioner
Option B:	A/D converter
Option C:	Display systems

Option D:	Transducer
13.	For Nyquist contour, the size of radius is
Option A:	25
Option B:	0
Option C:	1
Option D:	∞
14.	Kelvin's double bridge is a modified Wheatstone's bridge which consider
Option A:	Galvanometer error
Option B:	Contact Resistance
Option C:	High Resistance
Option D:	Battery error
15.	The number of branches terminating at infinity is given by \qquad , where P is number of open loop poles and Z is number of open loop zeros.
Option A:	$\mathrm{P}+\mathrm{Z}$
Option B:	P-Z
Option C:	P*Z
Option D:	P/Z
16.	The breakaway point calculated mathematically
Option A:	Does not lie on root locus
Option B:	May or may not lie on root locus
Option C:	Always lie on root locus
Option D:	Lies on no root locus area only.
17.	The polar plot of the open loop transfer function of a feedback control system intersects the real axis at -2 . The gain margin of the system is
Option A:	$-5 \mathrm{~dB}$
Option B:	0 dB
Option C:	-6 dB
Option D:	40 dB
18.	The bridge is balanced when
Option A:	Detector or galvanometer voltage is infinity
Option B:	Detector or galvanometer current is zero
Option C:	Detector or galvanometer voltage is zero
Option D:	Detector or galvanometer current is infinity
19.	The polar plot of a transfer function passes through the critical point ($-1,0$). Gain margin is
Option A:	Zero
Option B:	1 dB
Option C:	100 dB
Option D:	Infinity
20.	is an undesired phenomenon
Option A:	Accuracy
Option B:	Precision
Option C:	Hysterisis
Option D:	Sensitivity

Q2.	Answer the following :
A	Solve any Two
i.	Explain in detail the components of a generalized measurement system with the help of block diagram.
ii.	List and explain all the general rules for constructing root locus.
iii.	What is the relationship between frequency domain specifications and time domain specifications?
B	Solve any One
i.	State the advantages of Kelvin's double bridge over Wheatstone bridge and derive expression for finding unknown resistance using Kelvin's double bridge.
ii.	Draw the polar plot for the given system $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\quad 100$
$\mathrm{~s}^{2}(\mathrm{~s}+2)(\mathrm{s}+4)(\mathrm{s}+8)$	

Q3.	Answer the following :
A	Solve any Two 5 marks each
1.	Differentiate between Accuracy and Precision.
ii.	Explain in detail one bridge circuit used for measuring inductance.
iii.	Find the intersection points with imaginary axis for the given system $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{\mathrm{k}}{\mathrm{s}(\mathrm{s}+3)(\mathrm{s}+6)}$
B	Solve any One 10 marks each
1.	Sketch the root locus for the given system (draw it on normal paper) $\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{\mathrm{k}}{(\mathrm{~s}+2)^{3}}$
ii.	List the magnitude plot and phase plot table for the given system: $\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{0.75(1+0.2 \mathrm{~s})}{\mathrm{s}(1+0.5 \mathrm{~s})(1+0.1 \mathrm{~s})}$

University of Mumbai

Examination 2021 under cluster 5 (Lead College: APSIT)

Examinations Commencing from 10 ${ }^{\text {th }}$ April 2021 to 17 ${ }^{\text {th }}$ April 2021
Program: Bachelor of Engineering
Curriculum Scheme: Electronics \& Telecommunication (Rev2019 'C'Scheme)
Examination: DSE Semester III
Course Code: ECC305 and Course Name: Electronic Instrumentation \& Control Systems
Time: 2 hour
Max. Marks: 80

Question Number	Correct Option (Enter either ' A ' or ' B ' or 'C' or 'D')
Q1.	C
Q2.	B
Q3.	B
Q4.	A
Q5.	A
Q6.	A
Q7.	C
Q8.	A
Q9.	A
Q10.	D
Q11.	C
Q12.	A
Q13.	D
Q14.	B
Q15.	B
Q16.	B
Q17.	C
Q18.	B
Q19.	A
Q20.	C

