K. J. Somaiya Institute of Engineering and Information Technology

Sion, Mumbai - 400022
NAAC Accredited Institute with 'A' Grade NBA Accredited 3 Programs
(Computer Engineering, Electronics \& Telecommunication Engineering and Electronics Engineering) Permanently Affiliated to University of Mumbai

## EXAMINATION TIME TABLE (JANUARY 2021)

PROGRAMME - T.E. (Electronics \& Telecommunication) (REV. -2012)(CBSGS)
SEMESTER - V

| Days and Dates | Time | Course Code | Paper |
| :---: | :---: | :---: | :--- |
| Thursday, January 7, 2021 | 3.30 p.m to 5.30 p.m | ETC501 | MICROCONTROLLERS AND <br> APPLICATIONS |
| Saturday, January 9, 2021 | 3.30 p.m to 5.30 p.m | ETC502 | ANALOG COMMUNICATION |
| Tuesday, January 12, 2021 | 3.30 p.m to 5.30 p.m | ETC503 | RANDOM SIGNAL ANALYSIS |
| Thursday, January 14, 2021 | 3.30 p.m to 5.30 p.m | ETC504 | R F MODELING AND ANTENNAS |
| Saturday, January 16, 2021 | 3.30 p.m to 5.30 p.m | ETC505 | INTEGRATED CIRCUITS |

Important Note: • Change if any, in the time table shall be communicated on the college web site.


Mumbai
PRINCIPAL
20th December 2020

# University of Mumbai <br> Examination 2020 under cluster 5 (Lead College: APSIT) 

Program: Electronics and Telecommunication Engineering
Curriculum Scheme: Rev 2012
Examination: Third Year Semester V
Course Code: ETC501 and Course Name: Microcontrollers and Applications
Time: 2 hour
Max. Marks: 80


| $\begin{gathered} \text { Q1. } \\ \text { (40 Marks) } \end{gathered}$ | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | Which port of 8051 has lower order Address and Data bus multiplexed? |
| Option A: | Port0 |
| Option B: | Port1 |
| Option C: | Port2 |
| Option D: | Port3 |
| 2. | In 8051, the maximum of $\qquad$ size of ROM can be connected externally. |
| Option A: | 4 kilobytes |
| Option B: | 256 bytes |
| Option C: | 128 bytes |
| Option D: | 64 kilobytes |
| 3. | In 8051, which register usually stores the output generated by ALU in several arithmetic and logical operations? |
| Option A: | Accumulator |
| Option B: | Special Function Register |
| Option C: | Timer Register |
| Option D: | Stack Pointer |
|  |  |
| 4. | Which of the following is not an interrupt of 8051? |
| Option A: | NMI- (Hardware Interrupt) |
| Option B: | External Interrupt 0 (INT0) |
| Option C: | Timer interrupt 0(TF0) |
| Option D: | Serial communication (RI + TI) |
|  |  |
| 5. | UART in 8051 is |
| Option A: | Hardware interrupt |
| Option B: | data transmission protocol |
| Option C: | allow user to interface input/output devices |
| Option D: | Universal Arithmetic Receiver and transmitter |
|  |  |
| 6. | In 8051, which instruction is of Direct Addressing mode? |
| Option A: | MOV R0,40H |
| Option B: | MOV A,R0 |
| Option C: | MOV A, @R0 |


| Option D: | MOV A,\#30H |
| :---: | :---: |
| 7. | In 8051, find the content of A for the following instructions MOV A, \#0FFH <br> ADD A , \#01H |
| Option A: | 01H |
| Option B: | 11H |
| Option C: | 10H |
| Option D: | 00H |
| 8. | In 8051, which instruction is used to make P1 As input port? |
| Option A: | MOV P1,\#0FFH |
| Option B: | MOV P1, @0FFH |
| Option C: | MOV P1,\#00H |
| Option D: | MOV P1,0FFH |
|  |  |
| 9. | What is the function of the WR pin in IC ADC0804? |
| Option A: | its active high input used to inform ADC0804 to the end of conversion |
| Option B: | its active low input used to inform ADC0804 to the end of conversion |
| Option C: | its active low input used to inform ADC0804 to the start of conversion |
| Option D: | its active high input used to inform ADC0804 to the start of conversion |
|  |  |
| 10. | LCD use __pin to latch information to its data pins |
| Option A: | RS |
| Option B: | E |
| Option C: | R/W |
| Option D: | VEE |
|  |  |
| 11. | Which flag is not there in ARM-7 |
| Option A: | Zero |
| Option B: | Carry |
| Option C: | Overflow |
| Option D: | Auxiliary Carry |
|  |  |
| 12. | What is function of instruction LDR R0, [R1], \#4 in ARM 7? |
| Option A: | Content of address stored in register R1 is incremented by 4 and transferred to register R0. |
| Option B: | Content of address stored in register R1 is transferred to register R0 and content of address is incremented by 4 . |
| Option C: | Content of address stored in register R1 is transferred to register R0 and address incremented by 4. |
| Option D: | Address stored in register R1 is incremented by 4 and content of new address is transferred to register R1. |
|  |  |
| 13. | What is a function of instruction MOV R0, R1, LSL\#4 in ARM 7? |
| Option A: | Content of register R1 is transferred to R0. |
| Option B: | Content of register R1 is multiplied by 4 and transferred to register R0. |
| Option C: | Content of register R1 is multiplied by 8 and transferred to R0. |
| Option D: | Content of register R1 is multiplied by 16 and transferred to register R0. |
|  |  |


|  | What does T, D, M, I stand for in ARM7TDMI? |
| :---: | :--- |
| Option A: | Thumb, Debug, Multiplier, ICE |
| Option B: | Timer, Debug, Multiplex, ICE |
| Option C: | Timer, Debug, Modulation, IS |
| Option D: | Thumb, Debug, Modulation, ICE |
|  |  |
| 15. | Which of the following is not a feature of ARM processors? |
| Option A: | Pipeline |
| Option B: | Symmetrical register file |
| Option C: | One cycle execution |
| Option D: | Variable size of instructions |
|  |  |
| 16. | Which of the following processor mode is not supported by ARM7 |
| Option A: | Abort |
| Option B: | FIQ |
| Option C: | IRQ |
| Option D: | Super Fast |
|  |  |
| 17. | LDR instruction in ARM7 is used to |
| Option A: | Load word into register |
| Option B: | Load next address of instruction in PC register |
| Option C: | Load next address of instruction in SP register |
| Option D: | Load next address of instruction in DPTR register |
|  |  |
| 18. | The address of the software interrupt in interrupt vector table of ARM7 is |
| Option A: | 0X00000000 |
| Option B: | 0X00000004 |
| Option C: | 0X00000008 |
| Option D: | 0X0000000C |
|  |  |
| 19. | BIC r0,r1,r2 instruction is used to perform below operation. |
| Option A: | r0=r1 AND (NOT r2) |
| Option B: | r0=r1 AND r2 |
| Option C: | r0=r1 AND (NOT r1) |
| Option D: | r0=r1 AND (NOR r2) |
|  |  |
| 20. | Which of the following is NOT a common characteristic of embedded systems? |
| Option A: | Multi- Functioned |
| Option B: | Tightly constrained |
| Option C: | Reactive |
| Option D: | Real time |
|  |  |
|  |  |
|  |  |


| Q2. <br> (20 Marks) | Solve any Two Questions out of Three 10 marks each |
| :---: | :--- |
| A | Design a microcontroller system using 8051 microcontroller, 8kB EPROM <br> \& 8kB RAM. |
| B | WAP for 8051 microcontroller to generate a square waveform of frequency <br> 1 kHz and 50\% duty cycle at pin P1.1. Assume 8051 is operating at frequency <br> 12 MHz. |


$\left\lvert\,$| C | Draw and explain the data flow model of ARM7. |
| :---: | :--- |
| Q3. <br> $(\mathbf{2 0}$ Marks Each $)$ Solve any Two Questions out of Three <br> A Explain PORT 1 structure of 8051. <br> B Explain register organization of ARM7. <br> C Explain digital camera as an example of embedded systems. |  | | (10 |
| :--- |\right.

## University of Mumbai

## Examination 2020 under cluster 5 (Lead College: APSIT)

Program: Electronics and Telecommunication Engineering
Curriculum Scheme: Rev 2012
Examination: Third Year Semester V
Course Code: ETC501 and Course Name: Microcontrollers and Applications

| Question <br> Number | Correct Option <br> Enter either 'A' or 'B' <br> or ' $\mathbf{C}^{\prime}$ or ' $\mathbf{D}$ ') |
| :---: | :---: |
| Q1. | A |
| Q2. | D |
| Q3. | A |
| Q4 | A |
| Q5 | B |
| Q6 | A |
| Q7 | D |
| Q8. | A |
| Q9. | C |
| Q10. | B |
| Q11. | D |
| Q12. | C |
| Q13. | D |
| Q14. | A |
| Q15. | D |
| Q16. | D |
| Q17. | A |
| Q18. | C |
| Q19. | A |
| Q20. | A |

## University of Mumbai

## Examination 2020 under cluster 5 （Lead College：APSIT）

Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to 20 ${ }^{\text {th }}$ January 2021
Program：Electronics and Telecommunication Engineering
Curriculum Scheme：Rev2012
Examination：TE Semester V
Course Code：ETC502 and Course Name：Analog communication
Time： 2 hour
Max．Marks： 80
ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ

| Q1． | Choose the correct option for following questions．All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | Thermal noise is also called |
| Option A： | Atmospheric noise |
| Option B： | Internal noise |
| Option C： | Receiver noise |
| Option D： | Johnson noise |
| 2. | What special circuit is used to generate a Double sideband suppressed carrier signal？ |
| Option A： | Sideband suppressor |
| Option B： | Anti－modulator |
| Option C： | Balanced modulator |
| Option D： | Carrier suppressor |
| 3. | Two sinusoidal signals are simultaneously modulating a carrier，the modulation indices being 0.3 and 0.4 ．The overall modulation index is |
| Option A： | 0.5 |
| Option B： | 0.1 |
| Option C： | 0.7 |
| Option D： | 0.12 |
| 4. | In a diode detector circuit，if the ac load for the diode is very much smaller than the dc load，it can result in |
| Option A： | poor sensitivity of the receiver |
| Option B： | poor AGC |
| Option C： | diagonal clipping |
| Option D： | negative peak clipping |
| 5. | An AM transmitter of 1 kW power is fully modulated．Calculate the power transmitted，if it is transmitted as SSB． |
| Option A： | 1KW |
| Option B： | 0.166 KW |
| Option C： | 0.28 KW |
| Option D： | 0.5 KW |
|  |  |
| 6. | What is the reference line of the modulating signal？ |
| Option A： | Zero Line |


| Option B: | Carrier peak line |
| :---: | :--- |
| Option C: | Modulated peak line |
| Option D: | Unmodulated peak line |
|  |  |
| 7. | If the deviation is 75KHZ and the maximum modulating frequency is 5KHZ, what <br> is the bandwidth of an FM wave? |
| Option A: | 80 KHZ |
| Option B: | 160 KHZ |
| Option C: | 40KHZ |
| Option D: | 320 KHZ |
|  |  |
| 8. | With increase in the modulation index of an FM wave the number of sidebands <br> having significant amplitude will |
| Option A: | Increase |
| Option B: | decrease |
| Option C: | Remain constant |
| Option D: | will get divided by 2 |
|  |  |
| 9. | To produce frequency modulation using a phase modulator |
| Option A: | the message signal must be integrated and then used for modulation |
| Option B: | the message signal must be differentiated and then used for modulation |
| Option C: | the phase-modulated signal must be integrated |
| Option D: | the phase-modulated signal must be differentiated |
|  |  |
| 10. | In frequency modulation by a single-tone modulating signal, the frequency <br> deviation constant and the modulating signal frequency are both doubled. The <br> modulation index will be |
| Option A: | Ability of receiver to select wanted signal from various incoming signal |
| Option B: | Minimum magnitude of input signal required to produced a specified output |
| Option C: | Ability to amplify weak signals |
| Option D: | Equally amplifies all the signal frequencies at receiver |
| Option A: | Quadrupled |
| Option B: | unchanged |
| Option C: | doubled |
| Option D: | 0.25 times the previous value |
|  |  |
| Option A: | Pre-Emphasis Circuit is used to amplify what kind of frequencies? |
| Option B: | High |
| Option C: | Moderate |
| Option D: | Oscillator |
|  |  |
| Option A: | The transmitted power in an FM system is |
| Option B: | Always constant |
| Option C: | Dependent on the carrier power and sidebands |
| Option D: | Dependent on Modulation index |
| 13. | What i Fidelt? |


| 14. | The standard intermediate frequency used in the superheterodyne FM receiver is |
| :---: | :---: |
| Option A: | 88 MHz |
| Option B: | 455 MHz |
| Option C: | 15 MHz |
| Option D: | 10.7 MHz |
| 15. | A superheterodyne AM broadcast receiver has an IF of 455 kHz . If it is tuned to a frequency of 700 kHz , the image frequency is |
| Option A: | 1610 kHz |
| Option B: | 1155 kHz |
| Option C: | 245 kHz |
| Option D: | 210 kHz . |
|  |  |
| 16. | A high value of IF for a superheterodyne receiver |
| Option A: | improves image frequency rejection |
| Option B: | improves the selectivity |
| Option C: | improves the sensitivity |
| Option D: | improves the fidelity |
|  |  |
| 17. | The Nyquist rate for a signal $\mathrm{X}(\mathrm{t})=5 \cos (2 \Pi \mathrm{X} 500 \mathrm{t})$ is |
| Option A: | 1200 HZ |
| Option B: | 1000HZ |
| Option C: | 2000HZ |
| Option D: | 1500HZ |
|  |  |
| 18. | A PAM signal may be generated using |
| Option A: | impulse sampling |
| Option B: | a sample-and-hold circuit |
| Option C: | natural sampling |
| Option D: | A clipper circuit |
|  |  |
| 19. | The PAM noise immunity is poor as |
| Option A: | It is the Pulsed form |
| Option B: | It is bipolar signal |
| Option C: | It is unipolar signal |
| Option D: | The information is contained in the amplitude variation |
|  |  |
| 20. | The signal power and noise power measured at the input of an amplifier are $150 \mu \mathrm{~W}$ and $1.5 \mu \mathrm{~W}$ respectively. If the signal power at the output 1.5 W and noise power is 40 mW , Calculate the amplifier noise factor. |
| Option A: | 2.666 |
| Option B: | 4.26 |
| Option C: | 3.66 |
| Option D: | 4 |


| Q2 <br> (20 Marks) | Solve any Four out of Six | 5 marks each |
| :---: | :--- | ---: |
| A | Explain the need of modulation in communication system |  |


| B | What is pre emphasis? Why is it used? Sketch and explain pre emphasis <br> circuit. |
| :--- | :--- |
| C | Why is IF selected as 455KHZ in AM? |
| D | What is aliasing? How can it be prevented? |
| E | Explain companding in detail |
| F | Explain double spotting with respect to radio receiver |


| Q3. <br> (20 Marks Each) |  |
| :---: | :--- |
| A | Solve any Two |
| i. | It is found that a radio transmitter is radiating a total power of 100 kW. <br> When the modulation index is 0.8, what is the carrier power radiated by the <br> transmitter? What is the sideband power? |
| ii. | Why is AGC required in receivers? Differentiate between simple and <br> delayed AGC. |
| iii. | With the help of a suitable diagram explain generation of PWM signal. |
| B | Solve any One |
| i. | What are different methods of FM generation? Draw circuit diagram and <br> explain the principle of reactance modulator. |
| ii. | State and prove sampling theorem for pass band signal. |

## University of Mumbai

Examination 2020 under cluster 5 (Lead College: APSIT)
Examinations Commencing from $23^{\text {rd }}$ December 2020 to $\mathbf{6}^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program: Electronics and Telecommunication Engineering
Curriculum Scheme: Re2012
Examination: TE Semester V
Course Code: ETC502and Course Name: Analog communication
Time: 2 hour
Max. Marks: 80

| Question <br> Number | Correct Option <br> Enter either 'A' or ' $\mathbf{B}$ <br> or ' ' $\mathbf{C}^{\prime}$ or ' $\mathbf{D}$ ') |
| :---: | :---: |
| Q1. | D |
| Q2. | C |
| Q3. | A |
| Q4 | D |
| Q5 | B |
| Q6 | B |
| Q7 | B |
| Q8. | A |
| Q9. | A |
| Q10. | B |
| Q11. | B |
| Q12. | B |
| Q13. | D |
| Q14. | A |
| Q15. | A |
| Q16. | B |
| Q17. | B |
| Q18. | D |
| Q19. | A |
| Q20. |  |

# University of Mumbai 

## Examination 2020

Program: EXTC
Curriculum Scheme: Rev-2012
Examination: TE Semester -V
Course Code: ETC 503 and Course Name: Random Signal Analysis
Time: 2 hour


| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | What is the probability of an impossible event? |
| Option A: | 0 |
| Option B: | 1 |
| Option C: | 0.47 |
| Option D: | 0.65 |
| 2. | If $\mathrm{f}(\mathrm{x})=\mathrm{k}(1+\mathrm{x}), 2 \leq \mathrm{x} \leq 5$, Find $\mathrm{P}(\mathrm{X}<4)$ |
| Option A: | 16/27 |
| Option B: | 17/32 |
| Option C: | 16/40 |
| Option D: | 22/35 |
|  |  |
| 3. | A continuous random variable $X$ has pdf defined by $f(x)=A+B x, 0 \leq x \leq 1$.If the mean of the distribution is $1 / 3$. Find $A$ and $B$. |
| Option A: | $\mathrm{A}=1 \mathrm{~B}=3$ |
| Option B: | $\mathrm{A}=4 \mathrm{~B}=9$ |
| Option C: | $\mathrm{A}=8 \mathrm{~B}=5$ |
| Option D: | $\mathrm{A}=2 \mathrm{~B}=-2$ |
|  |  |
| 4. | If $\mathrm{P}(\mathrm{x})=0.5$ and $\mathrm{x}=4$, then $\mathrm{E}(\mathrm{x})=$ ? |
| Option A: | 1 |
| Option B: | 0.5 |
| Option C: | 4 |
| Option D: | 2 |
| 5. | If ' $X$ ' is a random variable, taking values ' $x$ ', probability of success and failure being ' $p$ ' and ' $q$ ' respectively and ' $n$ ' trials being conducted, then what is the probability that ' $X$ ' takes values ' $x$ '? Use Binomial Distribution |
| Option A: | $\mathrm{P}(\mathrm{X}=\mathrm{x})={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{x}} \mathrm{p}^{\mathrm{x}} \mathrm{q}^{\mathrm{x}}$ |
| Option B: | $\mathrm{P}(\mathrm{X}=\mathrm{x})={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{x}} \mathrm{p}^{\mathrm{x}} \mathrm{q}^{(\mathrm{n}-\mathrm{x})}$ |
| Option C: | $\mathrm{P}(\mathrm{X}=\mathrm{x})={ }^{\mathrm{x}} \mathrm{C}_{\mathrm{n}} \mathrm{q}^{\mathrm{x}} \mathrm{p}^{(\mathrm{n}-\mathrm{x})}$ |
| Option D: | $\mathrm{P}(\mathrm{x}=\mathrm{x})={ }^{\text {x }} \mathrm{C}_{\mathrm{n}} \mathrm{p}^{\mathrm{n}} \mathrm{q}^{\mathrm{x}}$ |
|  |  |
| 6. | In a discrete probability distribution, the sum of all probabilities is always? |
| Option A: | 0 |
| Option B: | Infinite |
| Option C: | 1 |
| Option D: | 0.78 |
|  |  |
| 7. | $\mathrm{E}(\mathrm{X})=\mathrm{np}$ is for which distribution? |
| Option A: | Bernoulli's |
| Option B: | Binomial |
| Option C: | Poisson's |
| Option D: | Normal |
|  |  |


| 8. | Find the value of k if $f(x, y)=k(1-x)(1-y)$ for0 $<x, y<1$ is to be joint density function |
| :---: | :---: |
| Option A: | 3 |
| Option B: | 9 |
| Option C: | 7 |
| Option D: | 4 |
|  |  |
| 9. | What does the central limit theorem state? |
| Option A: | If the sample size increases sampling distribution must approach normal distribution |
| Option B: | If the sample size decreases then the sample distribution must approach normal distribution |
| Option C: | If the sample size increases then the sampling distribution much approach an exponential distribution |
| Option D: | If the sample size decreases then the sampling distribution much approach an exponential distribution |
|  |  |
| 10. | A random sample of size 100 is taken from a population whose mean is 60 and the variance is 400.Using central limit theorem with what probability can we assert that the mean of the sample will not differ from $\mu=60$ by more than 4 ? |
| Option A: | 0.9544 |
| Option B: | 0.77 |
| Option C: | 0.45 |
| Option D: | 0.33 |
|  |  |
| 11. | Autocorrelation function |
| Option A: | is an even function of $\tau$ |
| Option B: | is an odd function of $\tau$ |
| Option C: | may be an even or odd function of $\tau$ |
| Option D: | is both an odd and even function of $\tau$ |
|  |  |
| 12. | Stochastic process are |
| Option A: | Random in nature |
| Option B: | Are function of time |
| Option C: | Random in nature and are a function of time |
| Option D: | Not Random in nature and are not a function of time |
|  |  |
| 13. | A random process is given by $\mathrm{X}(\mathrm{t})=\mathrm{A} \cos \left(\mathrm{w}_{\mathrm{o}} \mathrm{t}+\Theta\right)$ where A and $\mathrm{w}_{\mathrm{o}}$ are constants and $\Theta$ is uniformly distributed over $(0, \Pi)$.The average power of process is |
| Option A: | $\mathrm{A}^{3} / 2$ |
| Option B: | $\mathrm{A}^{2} / 2$ |
| Option C: | A/2 |
| Option D: | A/7 |
|  |  |
| 14. | In Markov analysis, we are concerned with the probability that the |
| Option A: | state is part of a system |
| Option B: | system is in a particular state at a given time |
| Option C: | time has reached a steady state |
| Option D: | transition will occur |
|  |  |
| 15. | The first order Markov chain is generally used when |
| Option A: | random change in transition probabilities |
| Option B: | stable transition probabilities |
| Option C: | sufficient data |
| Option D: | no sufficient data |
|  |  |
| 16. | Most systems use a queue discipline known as |
| Option A: | longest processing time |
| Option B: | shortest processing time |
| Option C: | critical ratio |
| Option D: | FIFO |
|  |  |
| 17. | If the probability of hitting the target is 0.4 , find mean and variance. |


| Option A: | 0.6, 0.24 |
| :---: | :---: |
| Option B: | 0.4, 0.24 |
| Option C: | 0.4, 0.16 |
| Option D: | 0.6, 0.16 |
| 18. | Two unbiased coins are tossed. What is the probability of getting at most one head? |
| Option A: | 1/2 |
| Option B: | 1/3 |
| Option C: | 1/6 |
| Option D: | 3/4 |
|  |  |
| 19. | If the mean of population is 29 then the mean of sampling distribution is |
| Option A: | 29 |
| Option B: | 30 |
| Option C: | 21 |
| Option D: | 31 |
|  |  |
| 20. | A random variable X can take only two values, 2 and 4 i.e., $\mathrm{P}(2)=0.45$ and $\mathrm{P}(4)=0.97$. What is the Expected value of X ? |
| Option A: | 3.8 |
| Option B: | 2.9 |
| Option C: | 4.78 |
| Option D: | 5.32 |


| Q2 | Solve any Four out of Six Questions (5 marks each) |
| :--- | :--- |
| A | The joint probability density function of $(X, Y)$ is given by $\left.f(x, y)=k e^{-(x+y)}\right)$ <br> $, x \geq 0, y \geq 0$ Find $k$, Marginal probability densities of $X, Y$ |
| B | Write note on Markov Chain |
| C | State and prove any two properties of power spectral density function |
| D | Find mean and variance of Binomial distribution |
| E | State Central Limit Theorem and explain its significance |
| F | Explain Axiomatic definition of probability. |


| Q3. | Solve any Two out of Three Questions (10 marks each) |
| :---: | :--- |
| A | State and Prove Chapman-Kolmogorove equation |
| B | Find the autocorrelation function of a random process given by <br> $\mathrm{X}(\mathrm{t})=\mathrm{a}$ cos $(b \mathrm{~b}+\mathrm{Y}$ )where a, b are constants and Y is uniform random variable on $(-\Pi, \Pi)$. |
| C | A random process is defined by $\mathrm{X}(\mathrm{t})=\mathrm{A}$ cos $\left(\mathrm{w}_{\mathrm{w}} \mathrm{t}+\mathrm{O}\right)$ where A and $\mathrm{w}_{0}$ are constants and $\Theta$ is <br> a random variable uniformly distributed over $(0,2 \Pi)$. Show that process is ergodic in mean <br> and also in correlation. |

## University of Mumbai

## Examination 2020

Program: EXTC
Curriculum Scheme: Rev-2012
Examination: TE Semester -V
Course Code: ETC 503 and Course Name: Random Signal Analysis

| Question <br> Number | Correct Option <br> Enter either 'A' or ' $\mathbf{B}$ <br> or ' $\mathbf{C}^{\prime}$ ' or ' $\mathbf{D}$ ') |
| :---: | :---: |
| Q1. | A |
| Q2. | A |
| Q3. | D |
| Q4 | D |
| Q5 | B |
| Q6 | C |
| Q7 | B |
| Q8. | D |
| Q9. | A |
| Q10. | A |
| Q11. | A |
| Q12. | C |
| Q13. | B |
| Q14. | B |
| Q15. | B |
| Q16. | D |
| Q17. | B |
| Q18. | D |
| Q19. | A |
| Q20. | C |

# University of Mumbai 

## Examination 2020 under cluster 5 (Lead College:APSIT)

Examinations Commencing from $7^{\text {th }}$ January 2021 to 20 ${ }^{\text {th }}$ January 2021
Program:EXTC
Curriculum Scheme: 2012
Examination: TESemester V
Course Code:ETC504 and Course Name: RF Modelling and Antennas
Time: 2 hour
Max. Marks: 80

| Q61 | What is the value of ' $m$ ' for designing matching sections of a composite filter? |
| :---: | :---: |
| Option A: | $\mathrm{m}<0.6$ |
| Option B: | $\mathrm{m}>0.6$ |
| Option C: | $m \neq 0.6$ |
| Option D: | $\mathrm{m}=0.6$ |
| Q2 | Richard's transformation is used to convert |
| Option A: | Lumped element to a transmission line |
| Option B: | Transmission line to Lumped element |
| Option C: | Low pass filter to high pass filter |
| Option D: | High pass filter to low pass filter |
| Q3. | Arrange the sequence for designing filters using Loss insertion method. Steps - (i) Design low pass prototype (ii) Consider filter specifications (iii) Scaling and filter transformation for given requirements |
| Option A: | (i),(ii),(iii) |
| Option B: | (iii),(ii),(i) |
| Option C: | (ii),(iii),(i) |
| Option D: | (ii),(i),(iii) |
| Q4. | A mathematical function or a graphical representation of the radiation properties of the antenna as a function of space coordinates is known as |
| Option A: | Radiation pattern |
| Option B: | Power pattern |
| Option C: | FNBW |
| Option D: | HPBW |
| Q5. | The Far field is also known as |
| Option A: | Fresnel zone |
| Option B: | Fraunhofer zone |
| Option C: | Maxwell zone |
| Option D: | Marconi zone |
| Q6. | The power radiated from an antenna per unit solid angle is called as |
| Option A: | Radiation intensity |


| Option B: | Beamwidth |
| :---: | :---: |
| Option C: | First-null beam width |
| Option D: | HPBW |
| Q7. | A $\qquad$ is a device that converts a guided electromagnetic wave on a transmission line into a plane wave propagating in free space |
| Option A: | Transmitting antenna |
| Option B: | Receiving antenna |
| Option C: | Radar |
| Option D: | Mixer |
| Q8. | $\qquad$ antennas consist of a regular arrangement of number of antenna elements with a feed Network. |
| Option A: | Aperture antennas |
| Option B: | Array antennas |
| Option C: | Printed antennas |
| Option D: | Patch antennas |
| Q9. | If the distance from the antenna increases by 2 times, then its radiation density will |
| Option A: | Increase by 2 times |
| Option B: | Increase by 4 times |
| Option C: | Decrease by 2 times |
| Option D: | Decrease by 4 times |
| Q10. | Dipole antennas are the example of |
| Option A: | Wire antennas |
| Option B: | Aperture antennas |
| Option C: | Array antennas |
| Option D: | Parabolic antennas |
| Q11. | As the beam area of an antenna decreases, the directivity of the antenna; |
| Option A: | Decreases |
| Option B: | Increases |
| Option C: | Remains unchanged |
| Option D: | Depends on the type of the antenna |
| Q12. | $\qquad$ antenna consist of a flaring metal waveguide to direct radio waves in a beam |
| Option A: | Wire antenna |
| Option B: | Loop antenna |
| Option C: | Helical antenna |
| Option D: | Horn antenna |
|  |  |


| Q13. | What is the beam width for a half wave dipole antenna? |
| :--- | :--- |
| Option A: | $90^{\circ}$ |
| Option B: | $180^{\circ}$ |
| Option C: | $50^{\circ}$ |
| Option D: | $250^{\circ}$ |
|  |  |
| Q14. | Directivity and input impedance of a monopole antenna on a large ground plane <br> as compared to that of dipole antenna are: |
| Option A: | Twice \& Twice |
| Option B: | Twice \& Half |
| Option C: | Half \& Half |
| Option D: | Half \& Twice |
|  |  |
| Q15. | For broadside linear array, excitation phase is |
| Option A: | $\alpha=-\beta d$ |
| Option B: | a = $\beta \mathrm{d}$ |
| Option C: | Zero |
| Option D: | $90^{\circ}$ |
|  |  |
| Q16. | In order to increase the gain of the Yagi-Uda array, which elements can be added <br> to structure? |
| Option A: | Directors |
| Option B: | Reflectors |
| Option C: | Monopoles |
| Option D: | Isolators |
|  |  |
| Q17. | List out the features of loop antenna |
| Option A: | Expensive, difficult design |
| Option B: | Small in size, can replace any antenna |
| Option C: | Inexpensive, simple design, very versatile |
| Option D: | Large in size, implementation difficult and expensive |
|  |  |
| Q18. | The mode of propagation in a microstrip line is: |
| Option A: | Quasi TEM mode |
| Option B: | TE 11 mode |
| Option C: | Only TM mode |
| Option D: | TE 01 mode |
|  |  |
| Q19. | The symmetrical point on the parabolic surface is known as the |
| Option A: | Index |
| Option B: | Vertex |
| Option C: | Reflector |
|  | Mirror |
|  |  |
|  | is known as a single directive antenna. |
|  |  |
|  |  |
|  |  |


| Option A: | Corner director |
| :--- | :--- |
| Option B: | Corner dipole |
| Option C: | Corner reflector |
| Option D: | Yagi antenna |


| Q2 | Solve any Two Questions out of Three 10 marks each |
| :---: | :--- |
| A | Explain with equivalent circuits the RF behaviour of resistor, capacitor and <br> inductor. |
| B | Define and derive AC parameters for BJT and FET. |
| C | Explain filter design steps for Low pass filter design using image parameter <br> method. |


| Q3 | Solve any Two Questions out of Three 10 marks each |
| :---: | :--- |
| A | Derive the relation for near field and far field radiation for infinitesimal <br> dipole. |
| B | Explain the principle of pattern multiplication. |
| C | Explain working of microstrip antenna with special attention on various <br> types of feeds. |

## University of Mumbai

Examination 2020 under cluster 5 (Lead College:APSIT)
Examinations Commencing from $7^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program:EXTC
Curriculum Scheme: 2012
Examination: TESemester V
Course Code:ETC504 and Course Name: RF Modelling and Antennas
Time: 2 hour

| Question | Correct Option <br> (Enter either 'A' or ' $B^{\prime}$ or <br> 'C' or ' $D^{\prime}$ ' |
| :--- | :--- |
| Q1 | D |
| Q2 | A |
| Q3. | D |
| Q4. | A |
| Q5. | B |
| Q6. | A |
| Q7. | A |
| Q8. | B |
| Q9. | D |
| Q10. | A |
| Q11. | B |
| Q12. | D |
| Q13. | A |
| Q14. | B |
| Q15. | C |
| Q16. | A |
|  |  |


| Q17. | C |
| :--- | :--- |
| Q18. | A |
| Q19. | B |
| Q20. | C |

## University of Mumbai

## Examination 2020 under cluster 5 Lead College: APSIT

Examinations Commencing from $7^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program:BE Electronics \& Telecommunication Engineering
Curriculum Scheme: Rev 2012
Examination: TE Semester V
Course Code: ETC505 and Course Name: Integrated Circuits
Time: 2 Hours Max. Marks: 80

| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | Which circuit converts irregularly shaped waveforms to regular shaped waveforms? |
| Option A: | Schmitt trigger |
| Option B: | Voltage limiter |
| Option C: | Precision Rectifier |
| Option D: | Peak detector |
|  |  |
| 2. | In a voltage to frequency converter |
| Option A: | The output voltage is proportional to input current. |
| Option B: | The output frequency is proportional to input voltage. |
| Option C: | The output voltage is proportional to input frequency. |
| Option D: | The output current is proportional to input voltage. |
|  |  |
| 3. | An ideal operational amplifier has |
| Option A: | infinite output impedance |
| Option B: | zero input impedance |
| Option C: | infinite bandwidth |
| Option D: | Zero gain |
|  |  |
| 4. | Which among the following is a non-linear application of op-amp? |
| Option A: | V to I converter |
| Option B: | V to F converter |
| Option C: | Precision rectifier |
| Option D: | Instrumentation amplifier |
|  |  |
| 5. | Which one of the following is popular power audio amplifier IC |
| Option A: | NE 566 |
| Option B: | 7905 |
| Option C: | IC 723 |
| Option D: | LM 380 |
|  |  |
| 6. | An ideal second order active band reject filter has two cut off frequencies $f_{\mathrm{L}}$ and $f_{\mathrm{H}}$ where $f_{\mathrm{L}}<f_{\mathrm{H}}$ |
| Option A: | It passes frequencies above $f_{L}$ and rejects frequencies below $f_{\text {H }}$ |
| Option B: | It passes frequencies above $f_{\mathrm{H}}$ and rejects frequencies below $f_{\mathrm{L}}$ |
| Option C: | It passes frequencies above $f_{\mathrm{H}}$ and below $f_{L}$ |
| Option D: | It rejects frequencies above $f_{\mathrm{H}}$ and below $f_{\mathrm{L}}$ |



| Option C: | Greater than differential voltage gain |
| :---: | :---: |
| Option D: | Infinite |
| 15. | An instrumentation amplifier using three op-amps is characterized by |
| Option A: | Variable voltage gain, low input impedance, high output impedance and high CMRR. |
| Option B: | Fixed voltage gain, low input impedance, low output impedance and low CMRR. |
| Option C: | Variable voltage gain, high input impedance, low output impedance and high CMRR. |
| Option D: | Fixed voltage gain, high input impedance, high output impedance and high CMRR. |
| 16. | Voltage regulators keep a constant $\qquad$ output voltage when the input or load varies within limits. |
| Option A: | DC |
| Option B: | AC |
| Option C: | Ripple |
| Option D: | Zero |
|  |  |
| 17. | A decade counter has states. |
| Option A: | 5 |
| Option B: | 10 |
| Option C: | 15 |
| Option D: | 20 |
| 18. | For an Op-amp having differential gain $\mathrm{A}_{\mathrm{v}}$ and common mode gain $\mathrm{A}_{\mathrm{c}}$ then CMRR is given by |
| Option A: | $\mathrm{A}_{\mathrm{v}}+\mathrm{Ac}$ |
| Option B: | $\mathrm{A}_{\mathrm{v}} / \mathrm{A}_{c}$ |
| Option C: | $1+\left(\mathrm{Av}^{\prime} / \mathrm{A}_{\mathrm{c}}\right)$ |
| Option D: | $\mathrm{A}_{\mathrm{d}} / \mathrm{A}_{\mathrm{v}}$ |
|  |  |
| 19. | A counter circuit is usually constructed of |
| Option A: | A number of latches connected in cascade form |
| Option B: | A number of NAND gates connected in cascade form |
| Option C: | A number of flip-flops connected in cascade |
| Option D: | A number of NOR gates connected in cascade form |
|  |  |
| 20. | All of the following are parts of a basic voltage regulator except |
| Option A: | Control element |
| Option B: | Sampling circuit |
| Option C: | Voltage follower |
| Option D: | Error detector |

## Subjective/Descriptive questions

| Q2 | Solve any Four out of Six | (5 marks each) |
| :---: | :--- | :---: |
| A | Discuss any five parameters of op-amp. |  |


| B | Draw a neat diagram of non-inverting Schmitt trigger and its voltage transfer <br> characteristics. |
| :---: | :--- |
| C | Give any five features of IC 555. |
| D | Draw a neat circuit diagram of $R C$ phase shift oscillator using op-amp. Derive its <br> frequency of oscillation. |
| E | Draw a neat circuit of Voltage to Current converter with floating load. Give its <br> output expression. |
| F | Write short note on: IC 74181 Arithmetic Logic Unit |
| Q3 | Solve any Four out of Six |
| A | With the help of a neat circuit diagram explain any one application of PLL 565. |
| B | What is an instrumentation amplifier? Draw a neat circuit of an instrumentation <br> amplifier using 3 op-amps. |
| C | Draw and explain the functional block diagram of IC 555 |
| D | Explain Power amplifier LM 380. |
| E | Write short note on: Waveform generator XR 2206 |
| F | Draw the internal structure of IC 7490 Decade Counter. Draw its timing diagrams |

## University of Mumbai

Examination 2020 under cluster 5 Lead College: APSIT
Examinations Commencing from 7 ${ }^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program:BE Electronics \& Telecommunication Engineering

$$
\text { Curriculum Scheme: Rev } 2012
$$

Examination: TE Semester V
Course Code: ETC505 and Course Name: Integrated Circuits
Time: 2 Hours
Max. Marks: 80

| Question <br> Number | Correct Option (Enter either ' $A$ ' or 'B' or 'C' or 'D') |
| :---: | :---: |
| Q1. | A |
| Q2. | B |
| Q3. | C |
| Q4 | C |
| Q5 | D |
| Q6 | C |
| Q7 | C |
| Q8. | A |
| Q9. | A |
| Q10. | A |
| Q11. | D |
| Q12. | B |
| Q13. | C |
| Q14. | A |
| Q15. | C |
| Q16. | A |
| Q17. | B |
| Q18. | B |
| Q19. | C |
| Q20. | C |

