K. J. Somaiya Institute of Engineering and Information Technology Sion, Mumbai - 400022 NAAC Accredited Institute with 'A' Grade NBA Accredited 3 Programs (Computer Engineering, Electronics & Telecommunication Engineering and Electronics Engineering) Permanently Affiliated to University of Mumbai

EXAMINATION TIME TABLE (JANUARY 2021)

PROGRAMME - S.E. (Electronics) (REV. -2016) (Choice Based)

SEMESTER - III

Days and Dates	Time	Course Code	Paper
08 January 2021	12:30 p.m. to 02:30 p.m.	ELX301	APPLIED MATHEMATICS III
11 January 2021	12:30 p.m. to 02:30 p.m.	ELX302	ELECTRONICS DEVICES & CIRCUITS I
13 January 2021	12:30 p.m. to 02:30 p.m.	ELX303	DIGITAL CIRCUIT DESIGN
15 January 2021	12:30 p.m. to 02:30 p.m.	ELX304	ELECTRICAL NETWORK ANALYSIS AND SYNTHESIS
18 January 2021	12:30 p.m. to 02:30 p.m.	ELX305	ELECTRONIC INSTRUMENTS AND MEASUREMENT

Important Note: • Change if any, in the time table shall be communicated on the college web site.

Mumbai 20th December, 2020.

aufeer

Principal

University of Mumbai

Examinations Commencing from 7th January 2021 to 20th January 2021 Program: **BE Electronics Engineering** Curriculum Scheme: Rev 2016 Examination: SE Semester III Course Code: **ELX301** and Course Name: **Applied Mathematics III**

Time: 2 hour

=

Max. Marks: 80

Note : Q1 carrying 40 marks. Q2 and Q3 are carrying 20 equal marks.

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Find Laplace transform of $f(t) = 1$, $0 < t < 1$
Option A:	$\frac{1-e^{-s}}{s}$
Option B:	$\frac{1}{s}e^{-s}$
Option C:	$\frac{1}{s}$
Option D:	$\frac{1+e^{-s}}{s}$
	5
2.	The Laplace Transform of $cos^2 t$ is
Option A:	$\left[\frac{1}{s} - \frac{s}{s^2 + 1}\right]$
Option B:	$\left[\frac{1}{s} - \frac{s}{s^2 + 4}\right]$
Option C:	$\frac{1}{2} \left[\frac{1}{s} + \frac{s}{s^2 + 4} \right]$
Option D:	$\frac{1}{2} \left[\frac{1}{s} - \frac{s}{s^2 + 1} \right]$
3.	Find $L[e^{-2t}sin3t]$
Option A:	$\frac{3}{(s+2)^2+9}$
Option B:	$\frac{3}{(s-2)^2+9}$
Option C:	$\frac{1}{(s+2)^2+9}$
Option D:	$\frac{1}{s^2+9}$
4.	Find $L\left[\int_0^t \frac{\sin u}{u} du\right]$
Option A:	$tan^{-1}s$
Option B:	$\frac{tan^{-1}s}{s}$
Option C:	cot ⁻¹ s
Option D:	$\frac{\cot^{-1}s}{s}$

5.	$L^{-1}\left[\frac{s+5}{2}\right] = ?$
Option A:	$1s^2-25$
Option B:	cosh5t + sinh5t
Option C:	cosh5t + 5sinh5t
Option D:	cosht + 5 sinht
6.	Find $1 * e^{-at}$
Option A:	$1-e^{-at}$
Option B:	$\frac{1+e^{-at}}{2}$
Option C:	a
opuon er	$\frac{e^{-\alpha}-1}{a}$
Option D:	$1-e^{-at}$
<u> </u>	
7.	In Fourier series of $f(x) = x \sin x$ in $(-\pi, \pi)$. The value of b_n is
Option A:	0
Option B:	$\frac{-1}{2}$
Option C:	$\frac{(-1)^n}{(-1)^n}$
Option D:	$\frac{n^2-1}{1}$
Option D.	$\overline{n^2-1}$
0	
8.	$f(x) = x - x^2 \text{is}$
Option A:	even function
Option B:	
Option C:	Both even and odd function
Option D.	neither even hor odd
9.	The Fourier series in (0.2π) for x ² is.
	$x^2 = \frac{4\pi^2}{1} + 4 \sum_{n=1}^{\infty} \frac{1}{n} \operatorname{conv} - 4\pi \sum_{n=1}^{\infty} \frac{1}{n} \operatorname{conv} - \operatorname{Eor what value of } x$
	$x = \frac{1}{3} + 4\sum_{n=1}^{3} \frac{1}{n^2} \cos(x - 4) \exp(x - 4) \cos(x - 4)$
	we can obtain, $\frac{\pi^2}{2} = \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \cdots$
	$3 1^2 2^2 3^2 4^2$
Option A:	π
Option B:	-π
Option C:	0
Option D:	2π
10	
10.	A function f(t) is periodic with period T if
Option A:	f(t+T)=0
Option B:	f(t+T) = f(t)
Option C:	f(t+T) = -f(t)
Option D:	$f(t+T) = 2\pi$
11.	Let $\varphi = x^2 - 2yz + 3z^2$, find $\nabla \varphi$ at $(1, -2, 1)$
Option A:	2i-2j+2k

Option B:	2i + 2j + 2k
Option C:	2xi - 2yj + 2zk
Option D:	6
12.	If $\overline{F} = (x + 2y + az)\overline{i} + (bx - 3y - z)\overline{j} + (4x + cy + 2z)\overline{k}$ is
	irrotational then
Option A:	a = -4, b = 2, c = -1
Option B:	a = 4, b = 2, c = 1
Option C:	a = 4, b = 2, c = -1
Option D:	a = -4 h = -2 c = -1
- r	
12	
13.	Find curl F where $F = (y^2 cosx + z^3)i + (2ysinx - 4)j + (3xz^2 + 2)k$
Option A:	0
Option B:	
Option C:	6yl + 6xzk
Option D:	0
14	Gauss Divergence theorem expresses
Option A:	The surface integral as a line integral
Option B:	The volume integral as a line integral
Option C:	The surface integral as a volume integral
Option D:	The volume integral as a line integral
option D.	
15.	Integrate $\overline{F} = x^2 i + xy i$ from (0.0) to (1.1) along the parabola
	$y^2 = x$.
Option A:	5
-	12
Option B:	1
1	12
Option C:	7
_	12
Option D:	3
	12
16	Which of the following functions is NOT englytic
Ontion A:	Sinta
Option D	
Option B:	
Option C:	e ^z
Option D:	Sinz
17.	Find the fixed points of the transformation $w = \frac{zi+1}{z}$
Ontion A.	z+3i
Option D.	
• • • • • • • • • • • • • • • • • • •	

Option C:	1
Option D:	-1
18.	Which of the following statement is true
Option A:	A bilinear transformation is a combination of basic transformation
	translation, rotation and inversion
Option B:	A bilinear transformation is known as Mobius Transformation
Option C:	Every Bilinear transformation is conformal
Option D:	All options are TRUE
19.	Which of the following property of Bessel function is corect
Option A:	$J_{-n}(X) = (-1)^n J_n(X)$
Option B:	$J_{-n}(X) = J_n(X)$
Option C:	$J_{-n}(X) = nJ_n(X)$
Option D:	$J_{-n}(X) = -J_n(X)$
20.	The expansion of <i>cosx</i> in the form of Bessel function is
Option A:	$cosx = 1 + 2J_0 + 2J_2 + 2J_4 + 2J_{6+\cdots}$
Option B:	$\cos x = 2J_0 - 2J_2 + 2J_4 - 2J_{6+\cdots}$
Option C:	$cosx = J_0 + 2J_2 + 2J_4 + 2J_{6+\dots}$
Option D:	$cosx = J_0 - 2J_2 + 2J_4 - 2J_{6+\cdots}$

Q2.	Solve any Four out of Six5 marks each
(20 Marks Each)	
А	Find $L\left[e^{-t}\int_0^t e^u \cosh u\right]$
В	Solve by using Laplace transform $(D^2 + 4D + 8)y = 1$ where $y(0)=0, y'(0)=1$
С	Obtain the complex form of Fourier series for e^{-x} in $(-\pi,\pi)$
D	$\overline{F} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$ is irrotational. Find its Scalar potential.
Е	Evaluate by using Green's theorem $\int_C (xy + y^2)dx + x^2dy$, where C is the closed region bounded by $y = x$ and $y = x^2$
F	Find the bilinear transformation which maps the points $z = 0, 1, \infty$ onto $w = -5, -1, 3$

Q3.	Solve any Four out of Six	5 marks each
(20 Marks Each)		
А	Evaluate $\int_0^\infty e^{-2t} \left(\frac{\cos 2t - \cos t}{t}\right) dt$	
В	Find $L^{-1}\left[log\left(\frac{s^2+4}{s^2+9}\right)\right]$	
С	Obtain the half range Fourier cosine series expansion for $f(x) = x(\pi - x)$ in $(0, \pi)$	
D	Show that $\overline{F} = (y^2 - z^2 + 3yz - 2x)i + (3xz + 2xy)j + (3xz +$	(3xy - 2xz +

	(2z)k is both irrotational and solenoidal.	
E	Evaluate by using Stoke's theorem $\int_C \overline{F} d\overline{r}$ where $\overline{F} = x^2 i + xy j$ and C is the boundary of the rectangle x=0,y=0, x=1, y=1	
F	Prove that $\frac{d}{dx}[xJ_n(x)J_{n+1}(x)] = x[J_n^2(x) - J_{n+1}^2(x)]$	

University of Mumbai

Examinations Commencing from 7th January 2021 to 20th January 2021 Program: **BE Electronics Engineering** Curriculum Scheme: Rev 2016 Examination: SE Semester III Course Code: **ELX301** and Course Name: **Applied Mathematics III**

Time: 2 hour

Max. Marks: 80

	Correct Option
Question	(Enter either 'A' or 'B'
Number	or 'C' or 'D')
Q1.	А
Q2.	С
Q3.	А
Q4	D
Q5	В
Q6	D
Q7	А
Q8.	D
Q9.	С
Q10.	В
Q11.	В
Q12.	С
Q13.	А
Q14.	С
Q15.	С
Q16.	В
Q17.	В
Q18.	D
Q19.	А
Q20.	D

University of Mumbai Examination 2020 under Cluster 06 (Lead College: Vidyavardhini's College of Engg Tech) Examination Commencing from 7th January 2020 to 20th January 2021

Program: Electronics Engineering

Curriculum Scheme: Rev 2016

Examination: SE Semester III

Max. Marks: 80

Course Code: ELX302 and Course Name: Electronic Devices and Circuits-I

Time: 2 hour

1.	Choose the correct option for following questions. All the Questions are
40 marks	compulsory and carry equal marks.
1.	When a reverse bias is applied to a diode, it will
Option A:	Raise the potential barrier
Option B:	Lower the potential barrier
Option C:	Increases the majority-carrier current greatly
Option D:	Reduces the depletion region
2.	The thermal voltage V_T in diode current equation determined by
Option A:	$V_T = \frac{kT_K}{tq}$
Option B:	$V_T = \frac{T_K}{q}$
Option C:	$V_T = \frac{kT_K}{q}$
Option D:	$V_T = \frac{k_K}{q}$
3.	A forward potential of 10V is applied to a Si diode. A resistance of 1 K Ω is also in
	series with the diode. The current is
Option A:	9.3 mA
Option B:	10mA
Option C:	10A
Option D:	0.7mA
4.	Avalanche breakdown in a diode occurs when
Option A:	Potential barrier is reduced to zero.
Option B:	Forward current exceeds certain value.
Option C:	Reverse bias exceeds a certain value.
Option D:	breakdown point
5.	In a transistor, Ic = 100 mA and IE = 100.2 mA. The value of β is
Option A:	100
Option B:	0.2
Option C:	1

Option D:	200
6.	In the active region of a common-emitter amplifier the collector-base junction is
	while the base-emitter junction is
Option A:	reverse-biased, forward-biased.
Option B:	forward-biased, forward-biased.
Option C:	forward-biased, reverse-biased
Option D:	reverse-biased, reverse-biased
7.	Assuming VCE(sat)=0.2V and β =50, the minimum base current IB equired to drive the transistor in the figure to saturation is $\frac{3V}{I_{B}}$
Option A:	140 μΑ
Option B:	56 μΑ
Option C:	60 μΑ
Option D:	3 μΑ
8.	A common emitter transistor amplifier has a collector current of 1.0 mA when it's a base current is 25 μ A. What is the value of β ?
Option A:	100
Option B:	40
Option C:	200
Option D:	0.4
9.	For good stabilized biasing of the transistor of the CE amplifier of figure we should have

	R_{2} R_{2} R_{2} R_{2} R_{1} R_{2} R_{1} R_{2} R_{1} R_{2} R_{1} R_{2} R_{2} R_{1} R_{2} R_{3} R_{4} R_{4} R_{5} R_{4} R_{5} R_{5
Option A:	$RE/RB \ll 1$
Option B:	$RE/RB \gg 1$
Option C:	$RE/RB \ll hfe$
Option D:	$RE / RB \gg hfe$
10.	The quiescent collector current IC of a transistor is increased by changing resistances. As a result
Option A:	gm will not be affected
Option B:	gm will decrease
Option C:	gm will increase
Option D:	gm will increase or decrease depending upon bias stability
11	One of the most immentant characteristics of the FET is its
11. Option A:	bigh output impodence
Option R:	high current gain
Option C:	high input impedance
Option D:	high voltage gain
Option D.	
12.	There is no direct electrical connection between the gate terminal and the channel of a
Option A:	MOSFET
Option B:	BJT
Option C:	DIAC
Option D:	DIODE
13.	For E-MOSFETs, the relationship between output current and controlling voltage is defined by
Option A:	$I_D = \left(V_{GS} - V_{GS(Th)}\right)^2$
Option B:	$I_D = k(V_{GS} - V_{SB})^2$
Option C:	$I_D = k(V_{GS} - V_{DS})^2$
Option D:	$I_D = k(V_{GS} - V_{GS(Th)})^2$

14.	The MOSFETin the following circuit is in which configuration?
	$ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & $
Option A:	CS
Option B:	CG
Option C:	
Option D:	
15.	Identify the symbol:
	$ \begin{array}{c} $
Option A:	p-channel JFET
Option B:	n-channel JFET
Option C:	p-cnannel MOSEET
Option D:	
16.	In a photodiode, when there is no incident light, the reverse current is almost negligible and is called
Option A:	Zener current
Option B:	Dark current
Option C:	Photocurrent
Option D:	PIN current
17	designed to operate as a photovoltaic device
Option A^{\cdot}	Solar Cell
Option R:	Schottky diode
Option C:	Light Emitting Diode
Option D:	Varactor diode

18.	For full wave rectified sine wave, rms value is
	\bigcirc \bigcirc \top
	im in in in in item
Option A:	$0.707 I_{\rm m}$
Option B:	$0.6036 I_{\rm m}$
Option D:	$0.5 I_{\rm m}$
Option D.	0.518 I _m
19.	The value of inductance at which the current in a choke filter does not fall to zero
	is
Option A:	peak inductance
Option B:	critical inductance
Option C:	cut-in inductance
Option D:	damping inductance
20	The maximum officiency of full wave rectification is
$\frac{20}{\text{Ontion } \Lambda}$	40.6%
Option B:	100%
Option C:	81.2%
Option D:	85.6%
02	
20 Marks	
Α	Solve any Two 5 marks each
i	Explain the construction & working principle of EMOSFET with neat diagrams.
ii	Explain biasing methods of BJT
iii	Determine Zi, Zo and voltage gain for the given circuit, if VGSQ=0.35 V & IDQ=7.6
	mA. Given IDSS=6mA
	9 18 V
	$I_{DSS} = 6 \text{ mA}$
	$V_p = -3 V$
	$y_{\alpha\beta} = 10 \ \mu \beta$
	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	÷ ÷

В	Solve any One 10 marks each
i	Perform dc analysis on voltage divider biasing circuit of n-channel E-MOSFET to
	obtain IDQ, VGSQ and VDSQ.
ii	Determine Vc and VB for the given network.
	$ ho V_{CC} = \pm 20 V$
	$R_{\rm e}$ 2.7 kg
	$R_1 \ge 8.2 \text{ k}\Omega$
	C ₁ 10 µF
	$v_i \circ - \beta = 120$
	10 µF
	$R_2 \leq 2.2 \text{ k}\Omega$
	$\kappa_E \lesssim 1.8 \text{ km}^2$
	$V_{EE} = -20 \text{ V}$
0.3	
Q J 20 Mambre	
	Solve any Two 5 marks each
i	Explain the construction working and characteristics of LED
	Draw bridge rectifier circuit and explain working with waveforms
 iii	Write short note on Clipper circuit
B	Solve any One 10 marks each
i	Design a single stage CE Amplifier to give a voltage gain $Av > 125$ with stability
	factor S<10 and output voltage of Vorms=3V Assume Vcc=18V and VBE=0.7V
	Use non transistor with specifications: hfe (min)=145, hfe(tvp)=180, hie=4.5k Ω . and
	frequency $FL \le 50 \text{ Hz}$
	(10)
ii	Draw voltage divider bias CE amplifier circuit and obtain the expression for input
	impedance (Zi), output impedance (Zo), voltage gain (Av) and current gain (Ai).

University of Mumbai Examination 2020 under Cluster 06 (Lead College: Vidyavardhini's College of Engg Tech) Examination Commencing from 7th January 2020 to 20th January 2021 Program: Electronics Engineering Curriculum Scheme: Rev 2016 Examination: SE Semester III Course Code: ELX302 and Course Name: Electronic Devices and Circuits-I ur Max. Marks: 80

Time: 2 hour

Q1:

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	А
Q2.	С
Q3.	А
Q4	С
Q5	D
Q6	А
Q7	В
Q8.	В
Q9.	В
Q10.	С
Q11.	С
Q12.	А
Q13.	D
Q14.	В
Q15.	А
Q16.	В
Q17.	A
Q18.	A
Q19.	В
Q20.	С

$$g_{113} = A(11) \quad g_{mo} = \frac{2 I_{055}}{|v_{P}|} = 4ms$$

$$g_{m} = g_{mo} \left[1 - \frac{v_{45}}{v_{P}} \right] = 4 \cdot 47ms$$

$$r_{a} = \frac{1}{y_{05}} = 100K$$

$$Z_{i} = R_{i} ||R_{2} = g \cdot 17m - 2$$

$$Z_{o} = r_{a} ||R_{p} = 1 \cdot 77K - 2$$

$$A_{v} = -g_{m} (r_{a} ||R_{p}) = -7 \cdot 8$$

$$\varphi 2B - ii$$

$$R_{Th} = 1.73 k - 2$$

$$I = V_{cc} + VEE = 3.85 mA$$

$$R_{1} + R_{2}$$

$$E_{Th} = IR_{2} - VEE = -11.53 V$$

$$JB = VEE - VTh - VBE = 35.39 uA$$

$$R_{Th} + (I+B) RE$$

$$I_{c} = 4.25 mA$$

$$V_{c} = Vcc - IcR_{c} = 8.53 V$$

$$VB = -VTh - IBR_{Th} = -11.57 V$$

W 3 B is
S selection of
$$R_c$$

 $[Av] = h \frac{h_{1}(min)}{h_{ie}} \frac{R_c}{h_{ie}}$
 $R_c = 3 \cdot 87 K \cdot n$
 $R_{csh} = 3 \cdot 9 K \cdot n$
 $[Av] = 126$
 $[Av] = 126$

University of Mumbai Examination 2020 under Cluster 06 (Lead College: Vidyavardhini's College of Engg Tech) Examination Commencing from 7th January 2021 to 20th January 2021

Program: Electronics Engineering

Curriculum Scheme: Rev 2016

Examination: SE Semester III

Course Code: ELX303 and Course Name: Digital Circuit Design

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	Which are the universal gates?	
Option A:	OR	
Option B:	NOT	
Option C:	AND	
Option D:	NAND & NOR	
2.	Binary codes of decimal no $(100)_{10}$ is	
Option A:	1100101	
Option B:	1100 111	
Option C:	1100100	
Option D:	1101100	
3.	For logical expression	
	Y=ab+ bc +ac how many AND gates and OR gates required	
Option A:	AND GATE=3,OR GATE=1	
Option B:	AND GATE=2,OR GATE=1	
Option C:	AND GATE=2,OR GATE=2	
Option D:	AND GATE=2,OR GATE=4	
4.	Binary representation of gray no. 10110 is	
Option A:	11011	
Option B:	11001	
Option C:	11010	
Option D:	10110	
5.	Which of the following statements accurately represents the two BEST methods of	
	logic circuit simplification?	
Option A:	Actual circuit trial and error evaluation and waveform analysis	
Option B:	Karnaugh mapping and circuit waveform analysis	
Option C:	Boolean algebra and Karnaugh mapping	
Option D:	Boolean algebra and actual circuit trial and error evaluation	
6.	The logic family which has highest noise margin is	
Option A:	TTL	
Option B:	ECL	

Option C:	MOS
Option D:	CMOS
7.	To realize Half adder the gates required are
Option A:	One AND gate and one EX-OR gate
Option B:	One NAND gate and one EX-OR gate
Option C:	One OR gate and one EX-NOR gate
Option D:	One NOR gate and one EX-NOR gate
8.	A multiplexer with 4 select lines is a
Option A:	4:1 multiplexer
Option B:	8:1 multiplexer
Option C:	16:1 multiplexer
Option D:	32:1 multiplexer
9.	To realize full subtractor using active low decoder we need
Option A:	One 1:8 active low decoder and two NAND gates with 4 inputs.
Option B:	Two 1:8 active low decoder and two NAND gates with 4 inputs.
Option C:	Two 1:4 active low decoder and two OR gates with 4 inputs.
Option D:	One 1:8 active low decoder and two OR gates with 4 inputs.
10.	Data 1101 is to be transmitted for even parity, what will be 7-bit hamming code
Oration A.	
Option A.	100110
Option B:	1011110
Option C.	1010101
Option D.	
11	If clock frequency of mod 16 up ripple couptor is 2KHz then the square ways
11.	available from MSB flin flon will be
Option A [•]	
Option R:	500Hz
Option C [.]	250Hz
Option D:	125Hz
option D.	
12.	Number of NAND gates required to realize OR gate are
Option A:	2
Option B:	3
Option C:	4
Option D:	5
13.	Convert JK flip-flop to Toggle switch the condition is
Option A:	J=0, K=0
Option B:	J=1, K=1
Option C:	J=0, K=1
Option D:	J=1, K=0
<u>+</u>	
14.	The characteristic equation of a T flip flop is

Option A:	QN+1=QN
Option B:	QN+1=T QN'+T'QN
Option C:	QN+1=QN'
Option D:	QN+1=T'QN'+QNT
-	
15.	Find the correct statement related to Reset, Preset pins of JKMS flip flop IC 7476.
Option A:	Both are active low
Option B:	Both are active high
Option C:	Reset is active low and Preset is active high
Option D:	Reset is active high and Preset is active low
16.	TTL logic family gives inbuilt Noise margin of
Option A:	0.2V
Option B:	0.1V
Option C:	0.5V
Option D:	0.4V
17.	The number of D Flip-Flops required for mod 10 Johnson counter are
Option A:	4
Option B:	5
Option C:	6
Option D:	10
18.	The minimum number of flip flops required for mod 12 ripple counter is
Option A:	3
Option B:	
Option C:	6
Option D:	12
10	
19.	which it used for 8 to 1 multiplexer
Option A:	
Option B:	/4151
Option D:	
Option D:	/4104
20	
20.	Bing shift and twisted ring counters are
Option A [.]	Synchronous counters
Option B:	Asynchronous counters
Option C:	True binary counters
Option D:	Synchronous and true binary counters

Q2 (20 Marks)	

Α	Solve any Two 5 marks each
i.	Convert T flip flop to JK flip flop
ii.	Design FULL ADDER USING 8:1 MUX
iii.	Add the BCD numbers code from: $(27+34)_{BCD}$ and $(85+64)_{BCD}$
В	Solve any One 10 marks each
i.	Design 3 bit asynchronous counter using T flip-flop
ii.	Implement the expression using K-Map for the function $F(A,B,C,D) =$
	$\sum m(0,1,2,4,5,8,9,15)$

Q3. (20 Marks)	
Α	Solve any Two 5 marks each
i.	Draw and explain the circuit diagram of 2-input CMOS INVERTER gate.
ii.	Explain static and dynamic hazards
 111.	Explain race-around condition in JK Flip-Flop
В	Solve any One 10 marks each
i.	Simplify 4 variable Boolean function using Quine-McClusky technique
	$F(A,B,C,D) = \sum m(0,1,2,3,8,9,12,13)$
ii.	Design 2-bit UP/DOWN counter using JK Flip-Flop

University of Mumbai Examination 2020 under Cluster 06 (Lead College: Vidyavardhini's College of Engg Tech) Examination Commencing from 7th January 2021 to 20th January 2021 Program: Electronics Engineering Curriculum Scheme: Rev 2016 Examination: SE Semester III Course Code: ELX303 and Course Name: Digital Circuit Design

Time: 2 hour

Max. Marks: 80

Q1:

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	D
Q2.	С
Q3.	А
Q4	А
Q5	С
Q6	D
Q7	А
Q8.	С
Q9.	А
Q10.	А
Q11.	D
Q12.	В
Q13.	В
Q14.	В
Q15.	А
Q16.	D
Q17.	А
Q18.	В
Q19.	В
Q20.	A

Important steps and final answer for the questions involving numerical example Q.2 (A): (i) T=SR'Qn'+S'RQn ; (iii): (1241)_{bcd},(111)_{bcd} B) (ii)B'C+AD'+B'D' Q.3 (B)(i) F=A'C + B'D' + AC'D

University of Mumbai Examination 2020 under Cluster 06 (Lead College: Vidyavardhini's College of Engg Tech) Examinations Commencing from 7th January 2021 to 20th January 2021 Program: Electronics Engineering Curriculum Scheme: Rev 2016 Examination: SE Semester III Course Code: ELX304 and Course Name: Electrical Network Analysis & Synthesis Time: 2-hour

Max. Marks: 80

Note:

1. All Questions are compulsory and carry equal marks.

2. Assume suitable data wherever necessary.

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	A network contains linear resistors and ideal voltage sources. If values of all the resistors are doubled then the voltage across each resistor is	
Option A:	Halved	
Option B:	Doubled	
Option C:	increased by four times	
Option D:	decreased by four times	
2.	Find the voltage V_0 $R \land P \land $	
Option A:	48 V	
Option B:	24 V	
Option C:	36 V	
Option D:	28 V	
3.	Superposition theorem is not applicable to networks containing	
Option A:	nonlinear elements	
Option B:	dependent voltage source	
Option C:	dependent current source	
Option D:	transformers	
4.	What will be the maximum power that can be transferred to the load R_L from the voltage source	

	100 Ω 	
	$10 \vee \frac{1}{T}$ $\leq R_L$	
Option A:	1 W	
Option B:	10 W	
Option C:	0.25 W	
Option D:	0.5 W	
5.	In a series RLC circuit, $V_R = 3 V$, $V_L = 14 V$, $V_C = 10 V$. The input voltage to the circuit is	
Option A:	10 V	
Option B:	5 V	
Option C:	27 V	
Option D:	24 V	
	Obtain the current supplied by the sinusoidal current source I is	
6.	$\downarrow \land \land$	
Option A:	28 A	
Option B:	4 A	
Option C:	20 A	
Option D:	24A	
	The set $d(t) = 0$ D. Let $d(t) = 0$ the $d(t) = 0$ for $t = 0$ in Eigenstein $t = 0$	
	and C such that the step response v(t) in Figure has no	
7		
7.	+	
	o	
Option A:		
	$R \ge \frac{1}{2} \sqrt{\frac{L}{C}}$	
Ontion Di		
	$R > \frac{L}{L}$	
	···· VC	
Option C:		
	$R \ge 2\sqrt{\frac{2}{C}}$	
Option D [.]	1	
-ruon D.	$R = \frac{1}{\sqrt{LC}}$	
	A step function voltage is applied to an RLC series aircuit having $D = 2 \Omega I = 1$	
8.	H and $C = 1$ F. The transient current response of the circuit would be	
Ontion A:	over damped	
Option B: Option C: Option D: 8.	$R \ge \frac{1}{2} \sqrt{\frac{L}{C}}$ $R \ge \sqrt{\frac{L}{C}}$ $R \ge 2\sqrt{\frac{L}{C}}$ $R = \frac{1}{\sqrt{LC}}$ A step function voltage is applied to an RLC series circuit having R = 2 Ω , L = 1 H and C = 1 F. The transient current response of the circuit would be over damped	

Option B:	critically damped	
Option C:	under damped	
Option D:	overdamped as well as underdamped	
	A 2 mH inductor with some initial current can be represented as shown in figure.	
9.	$\begin{array}{c} 1(S) \\ \hline 0.002s \\ 1 \text{ mV} \end{array}$ What will be the value of the initial current is	
Option A:	0.5 A	
Option B:	2 A	
Option C:	1 A	
Option D:	0	
10.	For synthesizing the transfer function in Pole-Zero Plot, if degree of Numerator is not equal to degree of Denominator than	
Option A:	we add a pole/zero towards infinity in LHS of s-plane	
Option B:	we add a pole/zero towards infinity in RHS of s-plane	
Option C:	we add a pole/zero towards infinity in LHS & RHS of s-plane	
Option D:	we add a pole/zero towards Zero in LHS of s-plane	
11.	If all the poles & zeros are lying on negative s-plane (LHS of s-plane) than, the transfer function is	
Option A:	Perfectly Stable	
Option B:	Unstable	
Option C:	Marginally Stable	
Option D:	Infinite	
12.	As the poles of a network shift away from the x axis, the response	
Option A:	remains constant	
Option B:	becomes less oscillating	
Option C:	becomes more oscillating	
Option D:	never oscillating	
13.	Two two-port networks are connected in cascade. The combination is to be represented as a single two-port network. The parameters are obtained by multiplying the individual	
Option A:	z-parameter matrix	
Option B:	h-parameter matrix	
Option C:	y-parameter matrix	
Option D:	ABCD parameter matrix	
14.	For a two-port network to be reciprocal	
Option A:	$z_{11} = z_{22}$	
Option B:	$y_{21} = y_{12}$	
Option C:	$h_{21} = -h_{12}$	
Option D:	AD - BC = 0	

15.	A two-port network is defined by the following pair of equations $I_1 = 2V_1 + V_2$ and $I_2 = V_1 + V_2$. Its impedance parameters $(Z_{11}, Z_{12}, Z_{21}, Z_{22})$ are given by
Option A:	2, 1, 1, 1
Option B:	1, -1, -1, 2
Option C:	1, 1, 1, 2
Option D:	2, -1, -1, 1
-	
16.	If $P(S) = P1(S) * P2(S)$ than, $P(S)$ is said to be Hurwitz Polynomial, if
Option A:	P1(S) is Hurwitz Polynomial
Option B:	P2(S) is Hurwitz Polynomial
Option C:	P1(S) is Hurwitz Polynomial & P2(S) is not a Hurwitz Polynomial
Option D:	P1(S) & P2(S) both are Hurwitz Polynomial
17.	To realize the Foster form of Impedance Function Z(S)
Option A:	The degree of numerator > The degree of denominator
Option B:	The degree of numerator < The degree of denominator
Option C:	The degree of numerator = The degree of denominator
Option D:	The degree of numerator \leq The degree of denominator
18.	The Cauer - II form is obtained by
Option A:	Continued Fraction Expansion about the pole at infinity
Option B:	Partial Fraction Expansion of the admittance function Y(S)
Option C:	Continued Fraction Expansion about the pole at origin
Option D:	Partial Fraction Expansion of the impedance function Z(S)
19.	The attenuation constant α decreases gradually to zero at the cut-off frequency and remains at through the pass band
Option A:	zero
Option B:	π
Option C:	-π
Option D:	1
20.	In an m-derived low-pass filter, the value of m is
Option A:	$\sqrt{1 - \left(\frac{f_{\infty}}{f_c}\right)^2}$
Option B:	$\sqrt{1 - \left(\frac{f_c}{f_{\infty}}\right)^2}$
Option C:	$\sqrt{1 + \left(\frac{f_{\infty}}{f_c}\right)^2}$
Option D:	$\sqrt{1 + \left(\frac{f_c}{f_{\infty}}\right)^2}$

Q2.	Solve any Two Questions out of Three 10 marks each	(20 Marks)

University of Mumbai Examination 2020 under Cluster 06 (Lead College: Vidyavardhini's College of Engg Tech) Examinations Commencing from 7th January 2021 to 20th January 2021 Program: Electronics Engineering Curriculum Scheme: Rev 2016 Examination: SE Semester III Course Code: ELX304 and Course Name: Electrical Network Analysis & Synthesis Time: 2-hour Max. Marks: 80

Q1: Answer Key

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	D
Q2.	D
Q3.	А
Q4	С
Q5	В
Q6	С
Q7	С
Q8.	В
Q9.	А
Q10.	А
Q11.	А
Q12.	С
Q13.	D
Q14.	B & C
Q15.	В
Q16.	D
Q17.	В
Q18.	С
Q19.	A

Important steps and final answer for the questions involving numerical example

Q2(A): Step I:- When the 20 V source is acting alone

$$V'_x = 6(I_1 - I_2) = 6(5.71 - 4.29) = 8.52$$
 V

Step II:- When the 10 A source is acting alone

 $V_x'' = 6(I_1 - I_2) = 6(-5.71 + 4.29) = -8.52$ V

Step III:- By superposition theorem,

$$V_x = V_x' + V_x'' = 8.52 - 8.52 = 0$$

Q. 2(B)

Step I: Calculation of I_N

$$\mathbf{I}_N = (10\angle 30^\circ) \left(\frac{1.62\angle 58.24^\circ}{1.62\angle 58.24^\circ + 5} \right) = 2.69\angle 75^\circ A$$

Step II: Calculation of Z_N

$$\mathbf{Z}_N = 5 + \frac{(1+j2)(4+j4)}{1+j2+4+j4} = 6.01 \angle 13.24^\circ \ \Omega$$

Step III: Norton's Equivalent Network

Q.2 (C)

At $t = 0^+$, the capacitor acts as a short circuit.

$$v_C(0^+) = 0$$

 $i(0^+) = \frac{100}{1000} = 0.1 \text{ A}$
1000 Ω

Writing the KVL equation for t > 0,

At
$$t = 0^+$$
,
 $\frac{di}{dt}(0^+) = -\frac{10^6}{1000}i(0^+) = -\frac{10^6}{1000}(0.1) = -100 \text{ A/s}$

Differentiating, At $t = 0^+$

$$\frac{d^2i}{dt^2}(0^+) = -\frac{10^6}{1000}\frac{di}{dt}(0^+) = -\frac{10^6}{1000}(-100) = 10^5 \,\text{A/s}^2$$

$$I_b = \frac{V_2}{\frac{1}{s}} = sV_2$$

$$V_{a} = 1I_{b} + V_{2}$$

= $sV_{2} + V_{2} = (s+1)V_{2}$
$$I_{1} = \frac{V_{a}}{\frac{1}{s}} + I_{b} = sV_{a} + I_{b} = s(s+1)V_{2} + sV_{2} = (s^{2}+2s)V_{2}$$

$$V_{1} = 1I_{1} + V_{a} = (s^{2}+2s)V_{2} + (s+1)V_{2} = (s^{2}+3s+1)V_{2}$$

$$\frac{V_2}{V_1} = \frac{1}{s^2 + 3s + 1}$$

V₁/I₁={s²+3s+1}/s(s+2)

Q. 3. (C)

(i) The function F(s) has two zeros at $s = \pm j2$ and three poles at s = -1. Thus, all the poles and zeros are in the left half of the s plane. There is no pole on the jw axis. Hence, the residue test is not carried out. Even part of $N(s) = m_1 = s^2 + 4$ Odd part of $N(s) = m_1 = 0$ Even part of $D(s) = m_2 = 3s^2 + 1$ Odd part of $D(s) = m_2 = s^3 + 3s$ $A(w^2) = m_1m_2 - m_1n_2|_{s=jw} = (s^2 + 4)(3s^2 + 1) - (0)(s^3 + 3s)|_{s=jw} = 3s^4 + 13s^2 + 4|_{s=jw} = 3w^4 - 13w^2 + 4$ For $\omega = 1$, $A(\omega)^2 = 3 - 13 + 4 = -6$ This condition is not satisfied.

Hence, the function **F(s)** is **not positive real**.

$$F(s) = \frac{N(s)}{D(s)} = \frac{s^4 + 3s^3 + s^2 + s + 2}{s^3 + s^2 + s + 1}$$

2

N(s) and D(s) are Hurwitz

By Routh array,

s^4	1	1
s^3	3	1
2	2	
S	3	2
s^1	-8	
s^0	2	

Since there is a sign change in the first column of the array, N(s) is not Hurwitz. Thus, all the zeros are not in the left half of the s plane. The remaining two tests need not be carried out.

Hence, the function **F**(s) is not positive real.

University of Mumbai Examination 2020 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)

Examinations Commencing from 7th January 2021 to 20th January 2021

Program: Electronics Engineering

Curriculum Scheme: Rev 2016

Examination: SE Semester III

Course Code: ELX305 and Course Name: Electronics Instruments and Measurement Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	Which of the following error can arise as a result of mistake in reading, parallax, improper instrument location and inadequate lighting	
Option A:	Construction error	
Option B:	Transmission Error	
Option C:	Observation Error	
Option D:	Translation Error	
2.	Which of the following is static characteristic?	
Option A:	Speed of response	
Option B:	Fidelity	
Option C:	Lag	
Option D:	Resolution	
3.	The degree to which sensor characteristics remain constant over time is	
Option A:	Sensitivity	
Option B:	Linearity	
Option C:	Stability	
Option D:	Inverse sensitivity	
4.	A simple bridge circuit consists of a network of	
Option A:	2 resistance arms	
Option B:	6 resistance arms	
Option C:	4 resistance arms	
Option D:	3 resistance arms	
5.	Which principle operates a bridge circuit?	
Option A:	Kirchhoff's laws	
Option B:	ampere's rule	
Option C:	partial indication	
Option D:	null indication	
6.	Which of the following bridges is used for measurement of inductance with Quality Factor (Q) higher than 10	
Option A:	Anderson Bridge	

Option B:	Hay Bridge	
Option C:	Maxwell Bridge	
Option D:	Kelvin Double Bridge	
1		
7.	Which of the following is not part of CRO?	
Option A:	Sweep Generator	
Option B:	Trigger circuit	
Option C:	CRT	
Option D:	Bridge Circuit	
-		
8.	Control grid is given	
Option A:	positive voltage	
Option B:	negative voltage	
Option C:	neutral voltage	
Option D:	zero voltage	
1		
9.	The sweep generator of a CRO is used to produce	
Option A:	Saw tooth voltage for the horizontal deflection of electron beam	
Option B:	Sinusoidal voltage for the vertical deflection of electron beam	
Option C:	Saw tooth voltage for the vertical deflection of electron beam	
Option D:	Sinusoidal voltage for the horizontal deflection of electron beam	
10.	If the two input waveforms of equal amplitude and 90 degree phase difference is	
	applied to the CRO then the Lissajous patterns obtained will be	
Option A:	Straight line tilted at 45 degree with respect to X-axis	
Option B:	Vertical straight line	
Option C:	Ellipse	
Option D:	Circle	
11.	Which of the following is inverting type of DVM?	
Option A:	Linear Ramp Type	
Option B:	Staircase Ramp Type	
Option C:	Successive Approximation Type	
Option D:	Duel Slope Integrating Type	
12.	Loading effect is principally caused by instruments	
Option A:	High resistance	
Option B:		
Option C:	High sensitivity	
Option D:	Hign Kange	
12	Digital instruments are those which	
15. Option A:	Have numerical readout	
Option D:	I lave numerical readout	
Option C:	Use LED of LCD display Have aircuitery of digital design	
Option D:	Have checulury of digital design Use deflection type meter movement	
14	Self generating type transducers are transducers	
Option A:	Inverse	
Option A.		

Option B [.]	Secondary	
Option C:	Passive	
Option D:	Active	
15.	LVDT which is an instrument for the measurement of displacement, works on the	
	principal of	
Option A:	Mutual inductance	
Option B:	Linear inductance	
Option C:	Non - linear inductance	
Option D:	Linear capacitance	
16.	Relation between temperature and resistance of a conductor is	
Option A:	$R_t = R_{ref} [1+t]$	
Option B:	$R_{t} = R_{ref} [1 + \alpha \Delta t]$	
Option C:	$R_{t} = R_{ref} [1-\alpha t]$	
Option D:	$R_{t} = R_{ref} \left[1 - t \right]$	
17.	A thermocouple consists of	
Option A:	2 wires	
Option B:	1 wire	
Option C:	4 wire	
Option D:	3 wire	
18.	The ionization gauge an instrument used for the measurement of	
Option A:	Medium pressure	
Option B:	High pressure	
Option C:	Very high pressure	
Option D:	Very low pressure	
19.	Which of the following is not a type of pressure sensing element?	
Option A:	Bellows	
Option B:	Bourdon tube	
Option C:	Orifice plate	
Option D:	Diaphragm	
-		
20.	Turbine meters are generally preferred for	
Option A:	High viscosity and low flow measurements	
Option B:	High viscosity and high flow measurements	
Option C:	Low viscosity and low flow measurements	
Option D:	Low-viscosity and high flow measurements	

Q2	Solve any Four out of Six	5 marks each
А	Define and Explain 1) Sensitivity 2) Precision	
В	Write difference between Maxwell's and Hay's Bridge	
С	Explain the function of delay line in CRO with diagram	
D	With a neat diagram, explain the principle of digital time i	measurement
Е	Define transducers and explain the selection criteria of tra	nsducers

F	Draw the detailed diagram of Mcleod gauge	
Q3.	Solve any Four out of Six 5 marks each	
А	Explain the different types of errors	
В	Draw the neat labelled diagram of LCR Q meter and explain its operating principle	
С	Draw a block diagram of CRO and explain electron gun assembly	
D	Describe the digital frequency meter along with the diagram	
Е	Write a short note on LVDT	
F	Write a short note of rotameter	

University of Mumbai Examination 2020 under Cluster 06 (Lead College: Vidyavardhini's College of Engg Tech) Examination Commencing from 7th January 2021 to 20th January 2021 Program: Electronics Engineering Curriculum Scheme: Rev 2016 Examination: SE Semester III Course Code: ELX305 and Course Name: Electronic Instruments and Measurements Time: 2 hour Max. Marks: 80

Q1:

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	С
Q2.	D
Q3.	С
Q4	С
Q5	D
Q6	В
Q7	D
Q8.	В
Q9.	А
Q10.	D
Q11.	D
Q12.	В
Q13.	С
Q14.	D
Q15.	А
Q16.	В
Q17.	А
Q18.	D
Q19.	С
Q20.	D