University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)

Examination Commencing from 15th June 2021

Program: Electronics Engineering

Curriculum Scheme: Rev 2019

Examination: SE Semester III

Course Code: ELC304 and Course Name: Electrical Network Analysis and Synthesis Time: 2 hour Max. Marks: 80

_

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks		
1.	According to Kirchhoff's voltage law, the algebraic sum of all IR drops and		
	e.m.fs. in any closed loop of a network is always		
Option A:	Negative		
Option B:	Positive		
Option C:	Determined by battery e.m.fs.		
Option D:	Zero		
2.	A dependent source		
Option A:	May be a current source or a voltage source		
Option B:	Is always a voltage source		
Option C:	Is always a current source		
Option D:	Neither a current source nor a voltage source		
3.	For determining the polarity of a voltage drop across a resistor, it is necessary to		
	know the		
Option A:	Value of resistor		
Option B:	Value of current		
Option C:	Direction of current flowing through the resistor		
Option D:	Value of e.m.f. in the circuit		
4.	In superposition theorem, when we consider the effect of one voltage source, all		
	the other voltage sources are		
Option A:	Shorted		
Option B:	Opened		
Option C:	Removed		
Option D:	Undisturbed		
5.	Thevenin resistance is found by		
Option A:	Shorting all voltage sources		
Option B:	Opening all current sources		
Option C:	Shorting all voltage sources and opening all current sources		
Option D:	Opening all voltage sources and shorting all current sources		
6.	For magnetically coupled circuits, $M = K*\sqrt{(L1*L2)}$, where K represents		

Option A:	Inductance		
Option B:	Coefficient of coupling		
Option C:	Reluctance		
Option D:	Constant		
7.	A capacitor with initial voltage zero, what will be equivalent circuit at t=0+		
Option A:	Open circuit		
Option B:	Short Circuit		
Option C:	Voltage source		
Option D:	Current source		
8.	A inductor with initial current Io, what will be equivalent circuit at $t=\infty$		
Option A:	Short circuit		
Option B:	Open circuit		
Option C:	Short circuit across current source		
Option D:	open circuit in series with voltage source		
•			
9.	A step function voltage is applied to an RLC series circuit having $R=2\Omega$, $L=1H$ and $C=1$ F. The Transient response would be		
Option A:	over damped		
Option B:	under damped		
Option C:	Undamped		
Option D:	critically damped		
10.	The transient currents are due to		
Option A:	resistance of the circuit		
Option B:	impedance of the circuit		
Option C:	voltage applied to the circuit		
Option D:	charges stored in inductors and capacitor		
11.	The necessary and sufficient condition for a rational function F(s) to be the		
	driving-point impedance of an RC network is that all poles and zeros should be		
Option A:	complex and lie in the left half of s-plane		
Option B:	simple and lie on the negative real axis in the s-plane		
Option C:	complex and lie in the right half of s-plane		
Option D:	simple and lie on the positive real axis of the s-plane		
10			
12.	As the poles of a network shift away from the x-axis, the response		
Option A:	Remains constant		
Option B:	becomes less oscillating		
Option C:	become more oscillating		
Option D:	No oscillation		
10			
13.	A two-port resistive network satisfy the condition $A = D = (3/2)B = (4/3)C$. Find the value of Z11 for the network		
Omtion A			
Option A:			
Option B:	3/4 2/2		
Option C:			
Option D:			

14.	Which of the following ABCD parameters is unit less?		
Option A:	A and D		
Option B:	A and B		
Option C:	B and C		
Option D:	A and C		
15.	An RC driving -point impedance function has zeros at S=-2 and S=-5. The		
	admissible poles for the function would be		
Option A:	S=0,S=-6		
Option B:	S=0,S=-1		
Option C:	S=-3,S=-4		
Option D:	: S=-1,S=-3		
·			
16.	Determine the range of 'k' so that $P(s)=s^3+3s^2+2s+k$ is Hurwitz		
Option A:	0 < k < 6		
Option B:	0 < k < 5		
Option C:	1 < k < 0		
Option D:	k > 0		
i			
17.	The passband of typical filter network with Z1 and Z2 as the series and shunt-arm		
	impedance is characterized by		
Option A:	-1 < z1/4z2 < 0		
Option B:	-1 < z1/4z2 < 1		
Option C:	0 < z1/4z2 < 1		
Option D:	$z_{1/4z_{2}} > 0$		
18.	Find the value of Inductor for Constant K Low Pass "T" Section, if cutoff		
	frequency is 4KHz and nominal characteristic impedance is 5000hm		
Option A:	39.79mH		
Option B:	29.79mH		
Option C:	19.9mH		
Option D:	29.9mH		
19.	The Cauer - II form is obtained by		
Option A:	Continued Fraction Expansion about the pole at infinity		
Option B:	Partial Fraction Expansion of the admittance function Y(S)		
Option C:	Continued Fraction Expansion about the pole at origin		
Option D:	Partial Fraction Expansion of the impedance function Z(S)		
20.	If $Z11 = 10\Omega$, $Z12 = Z21 = 5\Omega$, $Z22 = 20\Omega$. Find the value of $Z1$, $Z2$ and $Z3$ for the		
	equivalent T-network		
Option A:	Z1=5, Z2=5, Z3=15		
Option B:	Z1=10,Z2=10,Z3=15		
Option C:	Z1=5,Z2=10,Z3=15		
Option D:	Z1=10,Z2=10,Z3=10		

University of Mumbai Examination 2021 under Cluster 06 (Lead College: Vidyavardhini's College of Engg Tech) Examination Commencing from 15th June 2021 Program: Electronics Engineering

Curriculum Scheme: Rev 2019

Examination: SE Semester III

Course Code: ELC304 and Course Name: Electrical Network Analysis and Synthesis Time: 2 hour Max. Marks: 80

Q1:

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	D
Q2.	А
Q3.	С
Q4	А
Q5	С
Q6	В
Q7	В
Q8.	С
Q9.	D
Q10.	D
Q11.	В
Q12.	С
Q13.	А
Q14.	А
Q15.	D
Q16.	А
Q17.	А
Q18.	С
Q19.	С
Q20.	А

2(A):

9:-2 A) D. The metwork is redrawn by source transformation 29 MM + 12 6I I3 Τ, KVL to mesh 1, ci) V1 = I1 - I3 -KUL to mesh 2, $N_{2} = 2(T_{2}+T_{3}) - 6T_{2}$ = -4T_{2} + 2T_{3} -_ cii) KUL to mesh 3, - (I3- I)-2I3-2(I2+I3)+6I2=0 Substituting Eq. (iii) in Eq.(i) $V_1 = \frac{1}{5} - \frac{1}{5} \frac{1}{5} - \frac{4}{5} I_2 = \frac{1}{5}$ き五 4 5

Substituting Eq. (iii) in eq. (ii) $V_2 = -4I_2 + 2\left(\frac{1}{5}I_1 + \frac{4}{5}I_2\right)$ 12 J2 24 - 4/5 -12/5 4/5 2/5 Z11 Z12 -Z21 Z22 ii step I VTh calculation of VTh 10Vx +) 52 31/2 - 100V (m) 10A Vx = 50V 100 - VTh + 10Vx - Vx = 0 100 - VTh + 9Vx = 0 100 - VTh +9 (50) = 0 NTH = 550V Step II Calculation of IN NX= 5(IN+10) KUL to mesh 1, 100 + 10V x - Vx = 0 Vx= - 100 9 .. IN = - 550 A 45 Step II calculation of RTh RTN = - 45 JL SLEP IV Calculation of IL IL = 550 = -110 A -45 +10 32 j42 j3(4-32) lii) 15-2 3 +)50/45°V -18-2 R Disty J KUL to meshi, $(3+j15)I_1 - j8I_2 = 50(45^\circ - i)$ KVL to mesh2, (ii) -j8I - j3I2 =0

50/450 I1 I2 = 3+j15 -j8 0 -j_3_ -38 50/45° T2 - 3+ j15 0 -j8 -18 3+j15 -j3 -j8 IZ - 3.66 / -310.33°A B) i) At 1=0-1,(0)=0 12(0)=0 i2 (0+)=0 i, (0+)= 10 = 0.25 A 30+10 30-52 107 (-102 30.24 V i, (t) izer 10-30(i1+i2) - 101, = 0 and 10-30 (i,tiz)-0.2di = 0 d+ i = 10-3012 = 0.25-0.75 12 di2 + 37.5 i2 = 2.5 P= 37.5, Q= 2.5 i2 Ct) = e^{-Pt} (Oe^{rt} dt + Ke^{-Pt} = 0.067 + Ke37.5E At t=0, i200=0 O = 0.067 + KK= -0.067 i2 (t) = 0.067 - 0.067e-37.5t N2(4)= 0.2 diz d-L = 0.2 d (0.067 - 0.067 e 37.54) dt $V_2(t) = 0.5 e^{-37.5t}$ for t>0

 $\begin{array}{c} \text{ii,} \quad V(S) \geq (S+1) = (LS+R)(S+1) \\ LS+R = LS+R \end{array}$ $\frac{-L(s^2 + R(s + 1))}{LS + R}$ -----------____ $\left(S^2 + \frac{R_S}{L} + \frac{1}{LC}\right)$ = (____ ____ S+R L _----Y(5)= H(S-S1)(5-52) (3-53) ____ ____ $\frac{-R}{L} + \sqrt{\left(\frac{R}{L}\right)^2 - \frac{4}{LC}}$ 5, 52 = -2 $\frac{R}{2L} \stackrel{4}{=} \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{L}}$ LC $S_3 = -R$ L $S_1 = -10 + 310^4$ $S_2 = -10 - 310^4$ Y(s)= H (s+10-10) (s+10+10) 5-53 H S2 + 205 + 108 5-53 R - 20 L Sz = -20 Y(5)= H (52+205+108) (5+20) At s= j(0), $\gamma(j_0) = H(10^8) = 10^{-1}$ H= 0.02×10-6 Y(S)= 0.02×10-6 (s2+205+108) (3+26) $C = 0.02 \times 10^{-6} F = 0.02 \mu F$ $\frac{1}{LC} = 10^{8}$ $L = \frac{1}{2}H$ $\frac{R}{L} = 20$ R= 10-2

St 3 (A). is pass 5+53+5 $p^{1}(s) = \frac{d}{ds} p(s) = 5s^{\frac{1}{2}} + 3s^{\frac{2}{2}} + 1$ $(g(s) = \frac{P(s)}{P^{1}(s)}$ $5s^{4}+3s^{2}+1)s^{5}+s^{3}+s(\frac{1}{5}s)$ 5 + 3 - 3 + 5 5 $\frac{2}{5}s^3 + \frac{4}{5}s^5 + \frac{5}{5}s^{4} + 3s^2 + 1(\frac{25}{2}s)$ 55 + 1052 -75²+1) = 5 + 4 5 (-2 5 23-25 26 s)-752+1 (-24) since quotient terms are negative, pis) is not Hurwitz, 402 MM GO J2 ii) 105) SOON i(o) = 500 = 5 A 40+60 i(0+)= 5A 60-2 M 0.4H ()5A + 10i 2 1(4) 10i - 60i - 0.4di = 0 dt di +1251 =0 dt P=125 ict) = Kept = Ket25t 1 (t) = 5 e 125t for t>0.

 $T_1 = \frac{1}{h_{11}} \mathbf{v}_1 = \frac{h_{12}}{h_{11}} \mathbf{v}_2$ I, = Y11 V, + Y12 V2, Y ... = 1 h... Y12 = - h12 hu $I_2 = h_2 \int \frac{1}{h_{11}} v_1$ + h22 V2 - h12 V2 hII Y21 = h21 h11 Y22 = h11 h22 - h12 h21 = Ah hi hij i cauer I $2(s) = s^{2} + 8s + 12$ $2s^{2} + 8s + 6$ BY CEE $2s^2 + 8s + 6)s^2 + 8s + 12(\frac{1}{2} \leftarrow z$ $\frac{\frac{5}{7} + 8 \cdot 12}{\frac{5^2 + 4}{4} + 3} \frac{\frac{5}{2} + 8 + 6}{\frac{1}{2} + 9} \frac{\frac{1}{2} + 9}{2s^2 + 9$ <u>7</u> s+6) 4 s+9 (<u>8</u> ← ≥ 45+48 $\frac{15}{7} \xrightarrow{7} 3 + 6 \left(\frac{49}{30} \le \frac{15}{7} \right)$ $6) \underline{15} \left(\underline{5} \leftarrow 2 \right)$ 0 - 8/7-2 5/14.12 1/2 D _MA_ MM_ im LIF -1 49 F

in Cause I 2002 12+8995² 6+894252 BYCE 6+5 s+2s²)12+8 s+s² (2 <u>12+16 s+4s²</u> -55-35² $Y(s) = \frac{6+8.5+2.5^2}{12+85+5^2}$ $12+55+5^2$) $6+55+25^2$ ($\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 45+352)12+85+52 (3/5 EZ 12+95 $\frac{7}{2}s+s^2$ $4s+\frac{3}{2}+s^2\left(\frac{8}{7}\leftarrow\gamma\right)$ 45+<u>8</u>52 5 52) 7 5+52 (49 6-2 14 -2 (55 15 52) 5 52 (5 6-4 555 0 V3F 5/49F 4+ 11 \$ 14 2 512 32-2 ij $\frac{1}{2} \frac{S}{S^2 + 1}$ Y5(5)= S (s²+1)(s+2) $v_{0(5)} = v_{5}(5) \times \frac{4/5}{2+4/5} = \frac{2v_{5}(5)}{5+2} =$ $\frac{AS+B}{S^2+1} + \frac{C}{S^4}$ No(S) = s+ 2. $S = (As + B)(s+2) + ((s^{2}+1))$ $S = (A+C)S^2 + (2A+B)S + (2B+C)$ A+c=02A+B=1 28+ (=0 A=0.4, B=0.2, C=-0.4 $N_0(5) = 0.45 + 0.2 - 0.4 = \frac{0.4}{s+2}$ No (+)= 0.4 (ost + 0.2 sint - 0.4 e2t for +>0