University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examination Commencing from $15^{\text {th }}$ June 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2019
Examination: SE Semester III
Course Code: ELC304 and Course Name: Electrical Network Analysis and Synthesis

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	According to Kirchhoff's voltage law, the algebraic sum of all IR drops and e.m.fs. in any closed loop of a network is always
Option A:	Negative
Option B:	Positive
Option C:	Determined by battery e.m.fs.
Option D:	Zero
2.	A dependent source
Option A:	May be a current source or a voltage source
Option B:	Is always a voltage source
Option C:	Is always a current source
Option D:	Neither a current source nor a voltage source
3.	For determining the polarity of a voltage drop across a resistor, it is necessary to know the
Option A:	Value of resistor
Option B:	Value of current
Option C:	Direction of current flowing through the resistor
Option D:	Value of e.m.f. in the circuit
4.	In superposition theorem, when we consider the effect of one voltage source, all the other voltage sources are
Option A:	Shorted
Option B:	Opened
Option C:	Removed
Option D:	Undisturbed
Option A:	Shorting all voltage sources by
Option B:	Opening all current sources
Option C:	Shorting all voltage sources and opening all current sources
Option D:	Opening all voltage sources and shorting all current sources
6.	For magnetically coupled circuits, M = K*ل (L1*L2), where K represents

Option A:	Inductance
Option B:	Coefficient of coupling
Option C:	Reluctance
Option D:	Constant
7.	A capacitor with initial voltage zero, what will be equivalent circuit at $\mathrm{t}=0+$
Option A:	Open circuit
Option B:	Short Circuit
Option C:	Voltage source
Option D:	Current source
8.	A inductor with initial current Io, what will be equivalent circuit at $\mathrm{t}=\infty$
Option A:	Short circuit
Option B:	Open circuit
Option C:	Short circuit across current source
Option D:	open circuit in series with voltage source
9.	A step function voltage is applied to an RLC series circuit having $\mathrm{R}=2 \Omega, \mathrm{~L}=1 \mathrm{H}$ and $\mathrm{C}=1 \mathrm{~F}$. The Transient response would be
Option A:	over damped
Option B:	under damped
Option C:	Undamped
Option D:	critically damped
10.	The transient currents are due to
Option A:	resistance of the circuit
Option B:	impedance of the circuit
Option C:	voltage applied to the circuit
Option D:	charges stored in inductors and capacitor
11.	The necessary and sufficient condition for a rational function $\mathrm{F}(\mathrm{s})$ to be the driving-point impedance of an RC network is that all poles and zeros should be
Option A:	complex and lie in the left half of s-plane
Option B:	simple and lie on the negative real axis in the s-plane
Option C:	complex and lie in the right half of s-plane
Option D:	simple and lie on the positive real axis of the s-plane
12.	As the poles of a network shift away from the x-axis, the response
Option A:	Remains constant
Option B:	becomes less oscillating
Option C:	become more oscillating
Option D:	No oscillation
13.	A Two-port resistive network satisfy the condition $A=D=(3 / 2) B=(4 / 3) C$. Find the value of Z11 for the network
Option A:	4/3
Option B:	3/4
Option C:	2/3
Option D:	3/2

14.	Which of the following ABCD parameters is unit less?
Option A:	A and D
Option B:	A and B
Option C:	B and C
Option D:	A and C
15.	An RC driving -point impedance function has zeros at $S=-2$ and $S=-5$. The admissible poles for the function would be
Option A:	$\mathrm{S}=0, \mathrm{~S}=-6$
Option B:	$\mathrm{S}=0, \mathrm{~S}=-1$
Option C:	$S=-3, S=-4$
Option D:	$\mathrm{S}=-1, \mathrm{~S}=-3$
16.	Determine the range of ' k ' so that $\mathrm{P}(\mathrm{s})=\mathrm{s}^{3}+3 \mathrm{~s}^{2}+2 \mathrm{~s}+\mathrm{k}$ is Hurwitz
Option A:	$0<\mathrm{k}<6$
Option B:	$0<\mathrm{k}<5$
Option C:	$1<\mathrm{k}<0$
Option D:	$\mathrm{k}>0$
17.	The passband of typical filter network with Z 1 and Z 2 as the series and shunt-arm impedance is characterized by
Option A:	$-1<\mathrm{z} 1 / 4 \mathrm{z} 2<0$
Option B:	$-1<z 1 / 4 z 2<1$
Option C:	$0<\mathrm{z} 1 / 4 \mathrm{z} 2<1$
Option D:	$\mathrm{z} 1 / 4 \mathrm{z} 2>0$
18.	Find the value of Inductor for Constant K Low Pass "T" Section, if cutoff frequency is 4 KHz and nominal characteristic impedance is 500 ohm
Option A:	39.79 mH
Option B:	29.79 mH
Option C:	19.9 mH
Option D:	29.9 mH
19.	The Cauer - II form is obtained by
Option A:	Continued Fraction Expansion about the pole at infinity
Option B:	Partial Fraction Expansion of the admittance function Y(S)
Option C:	Continued Fraction Expansion about the pole at origin
Option D:	Partial Fraction Expansion of the impedance function Z(S)
20.	If $\mathrm{Z} 11=10 \Omega, \mathrm{Z} 12=\mathrm{Z} 21=5 \Omega, \mathrm{Z} 22=20 \Omega$. Find the value of $\mathrm{Z} 1, \mathrm{Z} 2$ and Z 3 for the equivalent T-network
Option A:	$\mathrm{Z} 1=5, \mathrm{Z} 2=5, \mathrm{Z} 3=15$
Option B:	$\mathrm{Z1}=10, \mathrm{Z2}=10, \mathrm{Z3}=15$
Option C:	$\mathrm{Z} 1=5, \mathrm{Z} 2=10, \mathrm{Z} 3=15$
Option D:	$\mathrm{Z} 1=10, \mathrm{Z} 2=10, \mathrm{Z} 3=10$

Q2 (20 Marks)	
A	Solve any Two 5 marks each
i.	For the Network shown in figure, find Z parameters.
ii.	Find the current in the 10Ω resistor using Thevenin's theorem.
iii.	Find the current through the capacitor using mesh analysis.
B	Solve any One 10 marks each

i.	The switch in the network shown in figure is closed at $t=0$.Find $V_{2}(t)$ for all $t>0$.Assume zero initial current in the inductor.
ii.	The network shown in figure has the driving- point admittance $Y(s)$ of the form $Y(s)=\underset{\left(s-s_{3}\right)}{H\left(s-s_{1}\right)\left(s-s_{2}\right)}$ (a) Express s_{1}, s_{2}, s_{3} in terms of R, L and C. (b) When $s_{1}=-10+j 10^{4}, s_{2}=-10-j 10^{4}$ and $Y(j 0)=10^{-1} \mathrm{mho}$, Find the values of R, L and C and determine the value of S_{3}.
Q3 (20 Marks)	
A	Solve any Two 5 marks each
i.	Test whether the polynomial $P(s)$ is Hurwitz. $P(s)=S^{5}+S^{3}+S$

ii.	For the network shown in figure. Find the current $i(t)$ when the switch is changed from the position 1 to 2 at $t=0$.
iii.	Covert Y-parameter in terms of Hybrid parameter.
B	Solve any One 10 marks each
i.	Obtain the Cauer -I and Cauer -II forms of the RC impedance function. $\begin{aligned} Z(s)= & (S+2)(S+6) \\ & 2(S+1)(S+3) \end{aligned}$
ii.	Find the network shown in Figure, Find the response $v_{o}(t)$.

University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examination Commencing from $15^{\text {th }}$ June 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2019
Examination: SE Semester III
Course Code: ELC304 and Course Name: Electrical Network Analysis and Synthesis
Time: 2 hour
Max. Marks: 80
Q1:

Question Number	Correct Option (Enter either 'A' or 'B' or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	D
Q2.	A
Q3.	C
Q4	A
Q5	C
Q6	B
Q7	B
Q8.	C
Q9.	D
Q10.	D
Q11.	B
Q12.	C
Q13.	A
Q14.	A
Q15.	D
Q16.	A
Q17.	A
Q18.	C
Q19.	C
Q20.	A

KVL to mesh 1,
$100+10 v_{x}-v_{x}=0$ $v_{x}=-\frac{100}{9}$
$I_{N}=-\frac{550}{45} \mathrm{~A}$
Step II Calculation of $R_{\text {Th }}$
$R_{T h}=-45 \Omega$
Step IV Calculation of IL

$$
I_{L}=\frac{550}{-45+10}=-\frac{110}{7} \mathrm{~A}
$$

iii) $\quad 3 \Omega \quad$ jj Ω jj ($\left.\mathrm{H}_{4}-\mathrm{I}_{2}\right)$

Kv2 to mesh,

$$
(3+j 15) I_{1}-j 8 I_{2}=50<45^{\circ} \text { - (i) }
$$

KVL to mesh 2,
$-j 8 I_{1}-j 3 I_{2}=0$
(ii)

$$
\begin{aligned}
& {\left[\begin{array}{cc}
3+j 15 & -j 8 \\
-j 8 & -j 3
\end{array}\right]\left[\begin{array}{c}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{cc}
50 \angle 45^{\circ} \\
0
\end{array}\right]} \\
& I_{2}=\left|\begin{array}{cc}
3+j 15 & 50 \angle 45^{\circ} \\
-j 8 & 0
\end{array}\right| \\
& \left|\begin{array}{cc}
3+j 15 & -j 8 \\
-j 8 & -j 3
\end{array}\right|
\end{aligned}
$$

$I_{2}=3.66 L-310.33^{\circ} \mathrm{A}$
B)

```
\[
\begin{aligned}
& \text { i) At } t=0^{-} \\
& i_{1}\left(0^{-}\right)=0 \\
& i_{2}\left(0^{-}\right)=0 \\
& i_{2}\left(0^{+}\right)=0 \\
& i_{1}\left(0^{+}\right)=\frac{10}{30+10}=0.25 \mathrm{~A} \\
& 20 \Omega
\end{aligned}
\]
\[
\underbrace{}_{i, 1}
\]
```


QU 3
(A) $p(s)=s^{5}+s^{3}+s$
$f^{\prime}(s)=\frac{d}{d s} p(s)=5 s^{4}+3 s^{2}+1$
$Q(s)=\frac{P(s)}{P^{\prime}(s)}$
$\left.5 s^{4}+3 s^{2}+1\right) s^{5}+s^{3}+s\left(\frac{1}{5} s\right.$ $\frac{s^{5} \pm \frac{3}{5} s^{3}+\frac{1}{5} s}{\left.\frac{2}{5} s^{3}+\frac{4}{5} s\right)} 55^{4}+3 s^{2}+1\left(\frac{25 s}{2}\right)$
$\frac{5 s^{4}+10 s^{2}}{\left.-7 s^{2}+1\right) \frac{2}{5} s^{5}+\frac{4}{5} s\left(-\frac{2}{35} s\right.}$
$\left.\frac{-\frac{2}{5} s^{3}-\frac{2}{35} s}{35}\right)$
$\left.\frac{26}{35}\right)-7 s^{2}+1(-24 s$
$\frac{-7 s^{2}}{26 s}$
since quotient terms are negative, pos) is not Hurwitz
\square
\qquad
\qquad
A

iii

$$
v_{1}=h_{11} I_{1}+h_{12} v_{2}
$$

$$
I_{2}=h_{21} J_{1}+h_{22} v_{2}
$$

$$
I_{1}=\frac{1}{h_{11}} v_{1}-\frac{h_{12}}{h_{11}} v_{2}
$$

$$
I_{1}=Y_{11} v_{1}+Y_{12} v_{2}
$$

$$
\begin{aligned}
& y_{11}=\frac{1}{h_{11}} \\
& y_{12}=\frac{-\frac{h_{12}}{h_{11}}}{I_{2}}=h_{21}\left[\frac{1}{h_{11}} v_{1}-\frac{h_{12}}{h_{11}} v_{2}\right]+h_{22} v_{2}
\end{aligned}
$$

$$
\begin{aligned}
& y_{21}=\frac{h_{21}}{h_{11}} \\
& y_{22}=\frac{h_{11} h_{22}-h_{12} h_{21}}{h_{11}}=\frac{\Delta h}{h_{11}}
\end{aligned}
$$

$$
B
$$

i) Caner I


```
(i) (avd II
By CFE
\(\left.6+5 s+2 s^{2}\right) \frac{12+5 s+5^{2}(2}{12+16 s+45^{2}}\)
\[
\frac{12+16 s+4 s^{2}}{-s s-3 s^{2}}
\]
\(y(s)=\frac{6+8 s+2 s^{2}}{12+8 s+s^{2}}\)
\(\left.12+5 s+s^{2}\right) 6+8 s+2 s^{2}(1 / 2 \leftarrow Y\)
\(\frac{\left.4 s+\frac{3}{2} s^{2}\right) 12+8 s+s^{2}(3 / 5 \leftarrow z}{12+9 s}\)
\(\left.-\frac{7}{2} s+s^{2}\right)^{4 s+\frac{3}{2}+s^{2}}\left(\frac{8}{7} \leftarrow y\right.\)
```



```
\(\left.s^{2}\right) \frac{5}{14} s^{2}\left(\frac{s}{14}<-4\right.\)
\(\frac{-\frac{5}{14} s^{2}}{0}\)
```

$\quad v_{s}(s)$	$=\frac{1}{2} \frac{s}{s^{2}+1}$
$v_{0}(s)$	$=v_{s}(s) \times \frac{4 / s}{2+4 / s}=\frac{2 v_{s}(s)}{s+2}=\frac{s}{\left(s^{2}+1\right)(s+2)}$
$v_{0}(s)$	$=\frac{A s+B}{s^{2}+1}+\frac{c}{s+2}$
s	$=(A s+B)(s+2)+\left(\left(s^{2}+1\right)\right.$
s	$=(A+C) s^{2}+(2 A+B) s+(2 B+C)$
$A+C$	$=0$
$2 A+B$	$=1$
$2 B+C$	$=0$
$v_{0}(t)$	$=0.4(s)$

