University of Mumbai
Examination 2021 under Cluster 06
(Lead College: Vidyavardhini's College of Engg Tech)
Examinations Commencing from $15^{\text {th }}$ June 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2019
Examination: SE Semester III
Course Code: ELC302 and Course Name: Electronic Devices and Circuits I
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	The transition capacitance $\mathrm{C}_{\text {T }}$ of PN junction diode decreases
Option A:	With decrease in the reverse voltage
Option B:	With decrease in the forward voltage
Option C:	With increase in the reverse voltage
Option D:	With increase in the forward voltage
2.	Fermi energy level for n-type semiconductors lies ------------and P type semiconductor lies \qquad
Option A:	Close to conduction band, Close to valence band
Option B:	Close to conduction band, Close to conduction band
Option C:	Close to valence band, Close to conduction band
Option D:	Close to valence band, Close to valence band
3.	When a PN junction diode is operated in the forward biased mode , an increased in temperature results in
Option A:	Increase in forward voltage
Option B:	decrease in forward voltage
Option C:	Forward voltage remains same
Option D:	Forward voltage becomes infinite
4.	In the construction of Schottky diode,
Option A:	A PN junction is formed between p type semiconductor and N type semiconductor material.
Option B:	A Metal semiconductor junction is formed between a metal and N type semiconductor material.
Option C:	A Metal Oxide junction is formed between a metal and SiO 2 material.
Option D:	An insulator semiconductor junction is formed between an insulator and P type semiconductor material.
5.	Name the device in which energy is released in the form of light when the recombination of electrons and holes takes place.
Option A:	Zener diode
Option B:	Solar cell
Option C:	LED
Option D:	Photodiode
6.	Name the device which is always operated in reverse bias condition.

Option A:	Schottky diode
Option B:	Solar cell
Option C:	LED
Option D:	Photodiode
7.	In fixed bias circuit using an NPN transistor, if $\mathrm{VCC}=12 \mathrm{~V}, \mathrm{VBE}=0.7 \mathrm{~V}$, Base resistor $\mathrm{RB}=100 \mathrm{k}$ then I_{B} is
Option A:	$80 \mu \mathrm{~A}$
Option B:	$113 \mu \mathrm{~A}$
Option C:	$130 \mu \mathrm{~A}$
Option D:	130 mA
8.	Which Configuration has a high input impedance and low output impedance
Option A:	Common Base Configuration
Option B:	Common Collector Configuration
Option C:	Common Emitter Configuration
Option D:	Collector Emitter Configuration
9.	The emitter current in transistor
Option A:	is almost equal to leakage current
Option B:	is equal to base current
Option C:	is equal to difference between base current and collector current
Option D:	is equal to sum of base current and collector current
10.	The value of current gain β in CE Configuration, is -------- as compared to the current gain α in CB Configuration
Option A:	lower
Option B:	higher
Option C:	Same
Option D:	zero
11.	Hybrid π model consists of parameters such as
Option A:	small signal resistance r_{π} and a dependent current source gmV π
Option B:	input impedance, reverse voltage gain, current gain and output conductance
Option C:	small signal resistance re and a controlled current source
Option D:	small signal resistance r_{π} and an independent current source $\mathrm{gmV} \pi$

12.	
Identify biasing circuit	

Option A:	$\mathrm{I}_{\mathrm{m}} / \pi$
Option B:	$2 \mathrm{I}_{\mathrm{m}} / \pi$
Option C:	$\mathrm{I}_{\mathrm{m}} / 2$
Option D:	$\mathrm{I}_{\mathrm{m}} / \sqrt{ } 2$
19.	Reactance of capacitor is given by
Option A:	$\mathrm{Xc}=1 / 2 \pi \mathrm{f} \mathrm{C}$
Option B:	$\mathrm{Xc}=1 / 2 \pi \mathrm{R} \mathrm{C}$
Option C:	$\mathrm{Xc}=1 / 2 \pi \mathrm{~L} \mathrm{C}$
Option D:	$\mathrm{Xc}=1 / 2 \pi \mathrm{R} \mathrm{L}$
20.	In the design steps for RC coupled CE amplifiers, the voltage drop across emitter resistor R_{F} should be $--------~ a s ~ c o m p a r e d ~ t o ~ b a s e ~ e m i t t e r ~ v o l t a g e ~ o f ~ t r a n s i s t o r . ~$
Option A:	lower
Option B:	higher
Option C:	same
Option D:	zero

Q2. (20 Marks)	Solve any Four out of Six .
A	Draw and explain the small signal model of a PN Junction diode.
B	Sinusoidal waveform of 10 V peak to peak is applied at input signal Vi. Biased voltage $\mathrm{V}=3 \mathrm{~V}$. Identify this circuit and Draw the input and output waveforms for the given circuit.
C	Draw and explain the construction of solar cell. What is the array of solar cell?
D	Explain the operation of Bridge type full wave rectifier and draw the output waveform for $\mathrm{V}_{\mathrm{LDC}}$ and $\mathrm{I}_{\mathrm{LDC}}$.
E	Compare C and L filters.
F	Draw Energy band diagram of PN junction diode under Forward biased, Reverse biased and Zero biased l

Q3. (20 Marks)	Solve any Two Questions out of Three.
For the given circuit calculate $\mathrm{I}_{\mathrm{BQ},}, \mathrm{I}_{\mathrm{CQ}}$ and $\mathrm{V}_{\mathrm{CEQ}}$	
A	
Here VCC=30 $\mathrm{V}, \mathrm{RB}=680 \mathrm{~K}, \mathrm{~B}=90, \mathrm{RC}=6.2 \mathrm{~K}, \mathrm{RE}=1.5 \mathrm{~K}$	
B	For the given circuit, calculate 1)Voltage gain AVs 2)input resistance 3)output resistance $\beta=100, \mathrm{VA}=100$ and $\mathrm{VBE}=0.7 \mathrm{~V}$

University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examinations Commencing from 15 $^{\text {th }}$ June 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2019
Examination: SE Semester III
Course Code: ELC302 and Course Name: Electronic Devices and Circuits I

Q1:

Question Number	Correct Option (Enter either ' \mathbf{A}^{\prime} or ' \mathbf{B} or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	C
Q2.	A
Q3.	B
Q4	B
Q5	C
Q6	D
Q7	B
Q8.	B
Q9.	D
Q10.	B
Q11.	C
Q12.	C
Q13.	B
Q14.	A
Q15.	C
Q16.	A
Q17.	B
Q18.	
Q19.	
Q20.	

Important steps and final answer for the questions involving numerical example

Q2(B):This is a biased negative shunt clipper circuit.

Q. 3 A)

Q. 3 B)

$\frac{V \pi}{V S}=\frac{R_{1}^{\prime}}{R_{3}+R_{i} 1}$
$\therefore A_{S}=-151.54$
$R_{0}=\gamma 0=119 \mathrm{k} \Omega$
$R_{0}^{\prime}=$
$=5011 R \mathrm{C}$
$=5.71 \mathrm{k} \Omega$.
Q. 3 C)
find $V_{G S}$
$\begin{aligned} R_{G} & =\frac{R_{2}}{R_{1}+R_{2}} \times V_{D D}=\frac{1.8}{2.2+1 \cdot 8} \times 12 \\ & =5.4 \mathrm{~V}\end{aligned}$
$V_{G S S}=V_{G}-I_{D} R S=5.4-1.5 I_{D}$
find ID

I_{D}	$=k_{n}\left(V_{G S}-V_{T H}\right)^{2}$
	$=0.5\left(5.4-1.5 I_{D}-2\right)^{2}$
I_{D}	$=4.2 \mathrm{~mA}$ or 1.22 mA
Choose $I_{D}=1.22 \mathrm{~mA}$	

find VDS
$V_{D S}=V_{D D}-I_{D}\left(R_{D}+R_{S}\right)$
$=12-1.22(3.9+1.5)$
$=5.412 \mathrm{~V}$
$=5.412 \mathrm{~V}$

