University of Mumbai Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)

Examinations Commencing from 15th June 2021

Program: Electronics Engineering

Curriculum Scheme: Rev 2019

Examination: SE Semester III

Course Code: ELC302 and Course Name: Electronic Devices and Circuits I Max. Marks: 80

Time: 2 hour

Q1.	Choose the correct option for following questions. All the Questions are	
1	The transition canacitance C_{π} of PN junction diode decreases	
Ontion A ⁺	With decrease in the reverse voltage	
Option R:	With decrease in the forward voltage	
Option C:	With increase in the reverse voltage	
Option D:	With increase in the forward voltage	
Option D.		
2.	Fermi energy level for n-type semiconductors liesand P type semiconductor liesand P type	
Option A:	Close to conduction band, Close to valence band	
Option B:	Close to conduction band, Close to conduction band	
Option C:	Close to valence band, Close to conduction band	
Option D:	Close to valence band, Close to valence band	
3.	When a PN junction diode is operated in the forward biased mode, an increased	
	in temperature results in	
Option A:	Increase in forward voltage	
Option B:	decrease in forward voltage	
Option C:	Forward voltage remains same	
Option D:	Forward voltage becomes infinite	
4.	In the construction of Schottky diode,	
Option A:	A PN junction is formed between p type semiconductor and N type semiconductor material.	
Option B:	A Metal semiconductor junction is formed between a metal and N type semiconductor material.	
Option C:	A Metal Oxide junction is formed between a metal and SiO2 material.	
Option D:	An insulator semiconductor junction is formed between an insulator and P type semiconductor material.	
5	Name the device in which energy is released in the form of light when the	
J.	recombination of electrons and holes takes place.	
Option A:	Zener diode	
Option B:	Solar cell	
Option C:	LED	
Option D:	Photodiode	
6.	Name the device which is always operated in reverse bias condition.	

Option A:	Schottky diode	
Option B:	Solar cell	
Option C:	LED	
Option D:	Photodiode	
7.	In fixed bias circuit using an NPN transistor, if VCC =12V, VBE=0.7V, Base resistor RB= 100 k then I_B is	
Option A:	80 µA	
Option B:	113 μA	
Option C:	130 μΑ	
Option D:	130 mA	
8.	Which Configuration has a high input impedance and low output impedance	
Option A:	Common Base Configuration	
Option B:	Common Collector Configuration	
Option C:	Common Emitter Configuration	
Option D:	Collector Emitter Configuration	
9.	The emitter current in transistor	
Option A:	is almost equal to leakage current	
Option B:	is equal to base current	
Option C:	is equal to difference between base current and collector current	
Option D:	is equal to sum of base current and collector current	
10.	The value of current gain β in CE Configuration, is as compared to the current gain α in CB Configuration	
Option A:	lower	
Option B:	higher	
Option C:	Same	
Option D:	zero	
11.	Hybrid π model consists of parameters such as	
Option A:	small signal resistance r_{π} and a dependent current source gmV π	
Option B:	input impedance, reverse voltage gain, current gain and output conductance	
Option C:	small signal resistance re and a controlled current source	
Option D:	small signal resistance r_{π} and an independent current source gmV π	

12.	γ V	
	$\sum_{i=1}^{n}$	
	↓(←_○ v₀	
	Identify biasing circuit	
Option A:	DMOSFET fixed bias circuit.	
Option B:	EMOSFET Voltage divider bias circuit.	
Option C:	EMOSFET feedback biasing circuit	
Option D:	Collector to base bias circuit.	
13.	In case of JFET, tranconductance gm is given by,	
Option A:	gm=Ic/Vt	
Option B:	gm = 2Kn(Vgs-Vt)	
Option C:	gm=gmo[1-(Vgs/Vp)]	
Option D:	gm=Va/Ic	
1.4		
14.	The N channel connecting two N regions is absent in	
Option A:	N channel EMOSEET	
Option C:	D channel DMOSFET	
Option D:	P channel EMOSEET	
Option D.		
15	The input impedance of the MOSFET is very high Give reason	
Option A:	The SiO ₂ layer is present between gate terminal and channel.	
Option B:	Metallic contacts are used for connecting the Drain, gate and source terminals.	
Option C:	A P type semiconductor is used as a substrate	
Option D:	A N type semiconductor is used as a substrate.	
16.	In a N channel EMOSFET when a gate-to-source voltage Vgs is 0 V then value of	
	drain current is	
Option A:	Maximum	
Option B:	infinite	
Option C:	zero	
Option D:	drain current does not depend on Vgs	
17		
17.	The ripple factor of C Filter is decreases by	
Option A:	Increasing with the load resistance	
Option B:	Decreasing with the load resistance	
Option C:	boes not depend on the load resistance	
Option D:	nas the lowest value	
10	In a contar tan full wave restifier the value of the average load surrent I	
10.	1 in a center tap run wave recurrent, the value of the average load current I_{LDC} is	

Option A:	I_m/π
Option B:	$2 I_m/\pi$
Option C:	$I_m/2$
Option D:	$I_{m}/\sqrt{2}$
19.	Reactance of capacitor is given by
Option A:	$Xc = 1/2 \pi f C$
Option B:	$Xc = 1/2 \pi R C$
Option C:	$Xc=1/2 \pi L C$
Option D:	$Xc = 1/2 \pi R L$
20.	In the design steps for RC coupled CE amplifiers, the voltage drop across emitter resistor R_E should be as compared to base emitter voltage of transistor.
Option A:	lower
Option B:	higher
Option C:	same
Option D:	zero

Q2.	Solve any Four out of Six . 5 mark	ks each
(20 Marks)		
А	Draw and explain the small signal model of a PN Junction diode.	
В	Sinusoidal waveform of 10 V peak to peak is applied at input signa Biased voltage V= 3V. Identify this circuit and Draw the input and waveforms for the given circuit.	ıl Vi. output
С	Draw and explain the construction of solar cell. What is the array cell?	y of solar
D	Explain the operation of Bridge type full wave rectifier and draw the waveform for V_{LDC} and I_{LDC} .	ne output
Е	Compare C and L filters.	
F	Draw Energy band diagram of PN junction diode under Forward by Reverse biased and Zero biased	iased,

Q3.	Solve any Two Questions out of Three.	10 marks each
(20 Marks)		
Α	For the given circuit calculate I_{BQ} , I_{CQ} and V_{CEQ} $I_C + I_B$ I_B Here VCC=30V, RB=680K, B=90, RC=6.2K, RE=1.5K	$\beta_{dc} = 90$ 1.5k
В	For the given circuit, calculate 1)Voltage gain AVs 2)input resistance 3)output resistance β = 100,VA=100 and VBE=0.7 V	

University of Mumbai Examination 2021 under Cluster 06 (Lead College: Vidyavardhini's College of Engg Tech) Examinations Commencing from 15th June 2021 Program: Electronics Engineering Curriculum Scheme: Rev 2019 Examination: SE Semester III

Course Code: ELC302 and Course Name: Electronic Devices and Circuits I

Time: 2 hour

Max. Marks: 80

Q1:

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	С
Q2.	А
Q3.	В
Q4	В
Q5	С
Q6	D
Q7	В
Q8.	В
Q9.	D
Q10.	В
Q11.	А
Q12.	С
Q13.	С
Q14.	В
Q15.	А
Q16.	С
Q17.	А
Q18.	В
Q19.	А
Q20.	В

Important steps and final answer for the questions involving numerical example

Q2(B):This is a biased negative shunt clipper circuit.

Q.3 A)

Q. 3 B)

DC analysis $R_2 \times Vcc$ $R_1 + R_2$ VTH = 10 10+90 1-2V ×12 RTH = RILIR2 = 10K 1198 9K VTH-VBE IB = RTH + (I+B) RE 9K+ (101×0-5K) 8.4 UA BJB = 0.84 mf Vcc- IcRc- IE 12- (0.84×103× ICE E - (0.84×103×0 6.53V $\delta \Pi = \frac{\sqrt{T \times B}}{T c} = \frac{26 \text{ mV} \times 10}{9(84 \times 10^{-3})}$ 13-035 K-14 $gm = \frac{g}{\sqrt{T}} = \frac{0.84 \times 10^{-3}}{0.020}$ = 32.3 mhTC = VA = 100 - 119F Tc = 0.84Hybrid IT equ crt RS = B = C() america Fin RTH 2 YO Ri Ri Ri= YT = 3.095kn Ri' = Rill RTH = 2-3 KO $Avs = \frac{vo}{vs} = \frac{vo}{v\pi} \times \frac{v\pi}{vs}$ VS Vo = - 9m (rollRe) RIV 1-= Ro + Ril 15

AVS = - 151-54 R0 = r0 = 119 KA Ro'= TONRC = 5.71 KR

Q.3 C)

find VGs 1.8 ×12 $\frac{RG}{R1+R2} = \frac{R2}{R1+R2} \times VDD = \frac{R2}{R1+R2}$ 2.2+1.8 = 5.4V Vas = Vg - IDRS = 5.4 - 1.5 ID find ID IO= Kn (VGS-VTH)2 $=0.5(5.4-1.510-2)^{2}$ ID= 4.2 mA or 1: 22 mA Choose JD=1.22mA find VDS VDS = VDD - TO(RD+RS)= 12 - 1.22(3.9+1.5) = 5-412V