University of Mumbai

Examination 2021 under cluster __ (Lead College:
 \qquad)

Examinations Commencing from 1 ${ }^{\text {st }}$ June 2021 to 10 ${ }^{\text {th }}$ June 2021
Program: S.E.(Computer Engineering)
Curriculum Scheme: Rev-2019 'C' Scheme
Examination: S.E. Semester IV
Course Code: CSC401 Course Name: Engineering Mathematics IV
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks			
1.	The region of rejection of the null hypothesis H_{0} is known as			
Option A:	Critical region			
Option B:	Favourable region			
Option C:	Domain			
Option D:	Confidence region			
2.	Sample of two types of electric bulbs were tested for length of life and the following data were obtained			
		Size	Mean	SD
	Sample 1	8	1234 h	36 h
	Sample 2	7	1036 h	40 h
	The absolute value of test statistic in testing the significance of difference between means is			
Option A:	$\mathrm{t}=10.77$			
Option B:	$\mathrm{t}=9.39$			
Option C:	$\mathrm{t}=8.5$			
Option D:	$\mathrm{t}=6.95$			
3.	If X is a poisson variate such that $P(X=1)=P(X=2)$, then $P(X=3)$ is			
Option A:	$\frac{4 e^{2}}{3}$			
Option B:	$4 e^{2}$			
Option C:	$\frac{4}{3 e^{2}}$			
Option D:	$\frac{4}{e^{2}}$			

4.	If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$, Then following is not the eigenvalue ofadj A.
Option A:	6
Option B:	2
Option C:	4
Option D:	3
5.	For the matrix $\left[\begin{array}{llr}2 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ the eigenvector corresponding to the distinct eigenvalue $\lambda=2$ is
Option A:	$\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
Option B:	$\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$
Option C:	$\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$
Option D:	$\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$
6.	The necessary and sufficient condition for a square matrix to be diagonalizable is that for each of it's eigenvalue
Option A:	algebraic multiplicity > geometric multiplicity
Option B:	algebraic multiplicity $=$ geometric multiplicity
Option C:	algebraic multiplicity < geometric multiplicity
Option D:	algebraic multiplicity \neq geometric multiplicity
7.	If the characteristic equation of a matrix A of order 3×3 is $\lambda^{3}-7 \lambda^{2}+11 \lambda-$ $5=0$, then by the Cayley-Hamilton theorem A^{-1} is equal to
Option A:	$\frac{1}{5}\left(A^{3}-7 A^{2}+11 \mathrm{~A}\right)$
Option B:	$\frac{1}{5}\left(A^{2}+7 A+11 \mathrm{I}\right)$
Option C:	$\frac{1}{5}\left(A^{3}+7 A^{2}+11 \mathrm{~A}\right)$
Option D:	$\frac{1}{5}\left(A^{2}-7 A+11 \mathrm{I}\right)$
8.	Value of an integral $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the path $y=x^{2}$ is
Option A:	$\frac{5}{6}-\frac{i}{6}$
Option B:	$-\frac{5}{6}-\frac{i}{6}$
Option C:	$\frac{5}{6}+\frac{i}{6}$
Option D:	$\frac{-5}{6}+\frac{i}{6}$

9.	Integral $\int \frac{5 z^{2}+7 z+1}{z+1} d z$ along a circle $\|z\|=\frac{1}{2}$ is equal to
Option A:	1
Option B:	-1
Option C:	3/2
Option D:	0
10.	Analytic function gets expanded as a Laurent series if the region of convergence is
Option A:	rectangular
Option B:	triangular
Option C:	circular
Option D:	annular
11.	Residue of $f(z)=\frac{z^{2}}{(z+1)^{2}(z-2)}$ at a pole $z=2$ is
Option A:	4/9
Option B:	2/9
Option C:	1/2
Option D:	0
12.	z-transform of an unit impulse function $\delta(k)=\begin{gathered}1, \\ 0, \text { at } k=0 \\ 0, \text { otherwise }\end{gathered}$ is
Option A:	1
Option B:	0
Option C:	-1
Option D:	k
13.	$z\{\sin (3 k+5)\}, k \geq 0$ is
Option A:	$\frac{z^{2} \sin 2-z \sin 5}{z^{2}-2 z \cos 3+1}$
Option B:	$\frac{z^{2} \sin 5+z \sin 2}{z^{2}-2 z \cos 3+1}$
Option C:	$\frac{z^{2} \sin 5-z \sin 2}{z^{2}-2 z \cos 3+1}$
Option D:	$\frac{z^{2} \sin 2+z \sin 5}{z^{2}-2 z \cos 3+1}$
14.	The inverse z -transform of $f(z)=\frac{z}{(z-1)(z-2)} \quad,\|z\|>2$ is
Option A:	$2^{k}-2$
Option B:	$2^{k}-1$
Option C:	$2^{k}+1$
Option D:	$2^{k}+2$
15.	If the basic solution of LPP is $x=1, y=0$ then the solution is
Option A:	Feasible and non-Degenerate
Option B:	Non-Feasible and Degenerate
Option C:	Feasible and Degenerate
Option D:	Non-Feasible and non-Degenerate

16.	If the primal LPP has an unbounded solution then the dual has
Option A:	Unbounded solution
Option B:	Bounded solution
Option C:	Feasible solution
Option D:	Infeasible solution
17.	$\begin{aligned} & \text { Dual of the following LPP is } \\ & \text { Maximize } z=2 x_{1}+9 x_{2}+11 x_{3} \\ & \quad x_{1}-x_{2}+x_{3} \geq 3 \\ & \text { Subject to }-3 x_{1}+2 x_{3} \leq 1 \\ & \quad 2 x_{1}+x_{2}-5 x_{3}=1 \\ & x_{1}, x_{2}, x_{3} \geq 0 \end{aligned}$
Option A:	$\begin{array}{cc} \text { Minimize } w=-3 y_{1}+y_{2}+y^{\prime} \\ & -y_{1}-3 y_{2}+2 y^{\prime} \geq 2 \\ \text { Subject to } & y_{1}+y^{\prime} \geq 9 \\ -y_{1}+2 y_{2}-5 y^{\prime} \geq 11 \end{array}$ $y_{1}, y_{2} \geq 0, \text { y' unrestricted }$
Option B:	$\begin{gathered} \text { Minimize } w=-3 y_{1}+y_{2}+y_{3} \\ \quad-y_{1}-3 y_{2}+2 y_{3} \geq 2 \\ \text { Subject to } \begin{array}{c} y_{1}+y_{3} \geq 9 \end{array} \\ \quad-y_{1}+2 y_{2}-5 y_{3} \geq 11 \\ y_{1}, y_{2}, y_{3} \geq 0 \end{gathered}$
Option C:	$\begin{array}{cc} \text { Minimize } & w=2 y_{1}+9 y_{2}+11 y^{\prime} \\ & -y_{1}-3 y_{2}+2 y^{\prime} \geq 3 \\ \text { Subject to } \quad y_{1}+y^{\prime} \geq 1 \\ & -y_{1}+2 y_{2}-5 y^{\prime} \geq 1 \end{array}$ $y_{1}, y_{2} \geq 0, \mathrm{y} \text { ' unrestricted }$
Option D:	$\begin{array}{cc} \text { Minimize } & w=2 y_{1}+9 y_{2}+11 y_{3} \\ & -y_{1}-3 y_{2}+2 y_{3} \geq 3 \\ \text { Subject to } & y_{1}+y_{3} \geq 1 \\ -y_{1}+2 y_{2}-5 y_{3} \geq 1 \end{array}$ $y_{1}, y_{2} \geq 0, \mathrm{y} \text { ' unrestricted }$
18.	Consider the NLPP: Maximize $z=f\left(x_{1}, x_{2}\right)$, subject to the constraint $h=g\left(x_{1}, x_{2}\right)-b \leq 0$. Let $L=f-\lambda g$, then the Kuhn-Tucker conditions are
Option A:	$\frac{\partial L}{\partial x_{1}} \geq 0, \quad \frac{\partial L}{\partial x_{2}} \geq 0, \quad \lambda h \geq 0, \quad h \geq 0, \quad \lambda \geq 0$
Option B:	$\frac{\partial L}{\partial x_{1}}=0, \quad \frac{\partial L}{\partial x_{2}}=0, \quad \lambda h=0, \quad h \leq 0, \quad \lambda \geq 0$
Option C:	$\frac{\partial L}{\partial x_{1}}=0, \quad \frac{\partial L}{\partial x_{2}}=0, \quad \lambda h \geq 0, \quad h \leq 0, \quad \lambda \leq 0$
Option D:	$\frac{\partial L}{\partial x_{1}} \geq 0, \quad \frac{\partial L}{\partial x_{2}} \geq 0, \quad \lambda h \geq 0, \quad h \geq 0, \quad \lambda=0$
19.	In a non-linear programming problem,
Option A:	All the constraints should be linear
Option B:	All the constraints should be non-linear

Option C:	Either the objective function or atleast one of the constraints should be non-linear
Option D:	The objective function and all constraints should be linear.
20.	Pick the non-linear constraint
Option A:	$x y+y \geq 7$
Option B:	$2 x-y \leq 5$
Option C:	$x+y \leq 6$
Option D:	$x+2 y=9$

Subjective/descriptive questions

Q2 (20 Marks)	Solve any Four out of Six5 marks each
A	In an exam taken by 800 candidates, the average and standard deviation of marks obtained (normally distributed) are 40% and 10% respectively. What should be the minimum score if 350 candidates are to be declared as passed
B	If A $=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$, By using Cayley-Hamilton theorem find the matrix represented by $A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}+2 A+I$
C	Evaluate the following integral using Cauchy-Residue theorem. $I=\int_{C} \frac{z^{2}+3 z}{\left(z+\frac{1}{4}\right)^{2}(z-2)} d z$ where c is the circle $\left\|z-\frac{1}{2}\right\|=1$
D	Obtain inverse z-transform $\frac{z+2}{z^{2}-2 z-3}, \quad 1<\|z\|<3$

$\begin{gathered} \hline \text { Q3 } \\ \text { (20 Marks) } \end{gathered}$	Solve any Four out of Six5 marks each					
A	When the first proof of 392 pages of a book of 1200 pages were read, the distribution of printing mistakes were found to be as follows.					
	No of mistakes in page (X)	0	1	2	3	4
	No. of pages (f)	275	72	30	7	5

B	Show that the matrix $\left[\begin{array}{crc}4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2\end{array}\right]$ is not diagonalizable.
C	If $f(z)=\frac{z-1}{(z-3)(z+1)}$ obtain Taylor's and Laurent's series expansions of $\mathrm{f}(\mathrm{z})$ in the domain $\|z\|<1 \& 1<\|z\|<3$ respectively.
D	If $f(k)=\frac{1}{2^{k}} * \frac{1}{3^{k}} \quad$ find $z\{f(k)\}, k \geq 0$
E	$\begin{aligned} & \text { Solve using dual simplex method } \\ & \text { Minimize } z=2 x_{1}+2 x_{2}+4 x_{3} \\ & \\ & 2 x_{1}+3 x_{2}+5 x_{3} \geq 2 \\ & \text { Subject to } 3 x_{1}+x_{2}+7 x_{3} \leq 3 \\ & \\ & \\ & x_{1}+4 x_{2}+6 x_{3} \leq 5 \\ & \\ & x_{1}, x_{2}, x_{3} \geq 0 \end{aligned}$
F	Solve following NLPP using Kuhn-Tucker method Maximize $z=2 x_{1}^{2}-7 x_{2}^{2}-16 x_{1}+2 x_{2}+12 x_{1} x_{2}+7$ Subject to $2 x_{1}+5 x_{2} \leq 105$ $x_{1}, x_{2} \geq 0$

Standard Normal Distribution Table

z	. 00	. 01	. 02	. 03	04	. 06	. 06	07	08	. 09
0.0	. 000	. 00	. 00	. 01	. 0100	. 0199	. 0239	. 0279	. 0319	. 0359
0.1	. 03	. 0438	. 0478	. 0517	. 0557	. 0696	. 0636	0575	. 0714	. 0753
0.2	0793	. 0832	. 0871	. 091	. 094	. 088	. 1026	. 1054	. 1103	. 1141
0.3	. 1179	. 1217	. 1255	. 1293	. 1331	. 1368	. 1406	. 1443	. 1480	. 1517
0.4	. 1554	. 1591	. 1628	. 1664	. 1700	. 1736	. 1772	. 1808	. 1844	. 1879
0.5	. 1915	. 1950	1985	2019	. 2054	. 2088	. 2123	2157	. 2190	. 2224
0.6	225	. 229	. 232	23	. 23	. 242	. 2454	2486	2517	. 2549
0.	258	. 261	. 2642	2673	2704	. 27	. 276	279	. 2823	. 2852
0.8	288	. 291	. 2939	2967	2995	. 3023	. 3051	. 3078	. 310	. 3133
0.9	. 315	. 318	. 3212	. 32	. 32	. 328	. 3315	. 3340	. 3365	. 3389
1.0	3413	. 3438	. 3461	3485	. 3508	. 3531	. 3554	3577	. 3599	. 3621
1.1	. 364	. 36	. 3681	370	. 37	. 3	. 377	. 37	. 38	. 3830
1.2	-3849	. 3805	. 388	. 390	. 3925	. 39	. 396	. 3980	. 39	. 4015
1.3	4032	404	. 4066	A082	. 4099	. 411	. 4131	A147	. 410	. 4177
1.4	A192	. 4207	. 4222	A236	. 425	. 426	. 4279	A292	. 430	. 4319
1.5	A332	. 4345	. 4357	A370	.438)	. 439	. 4006	. 4418	. 4429	. 44
1.6	445	. 446	. 447	A4	A49	. 45	. 451	45	. 453	. 4545
1.7	. 4554	. 456	. 457	A58	. 459	. 459	. 46	46	. 462	. 4633
1.8	A6	. 4649	. 4656	A66	4671	. 4678	. 4686	. 4693	. 4699	06
1.9	. 4713	. 4719	. 472	. 4	AT3	. 474	. 4750	. 47	. 47	. 4767
2.0	A772	AT78	. 47	A788	. 4793	. 479	. 8803	. 480	. 4812	. 4817
2.1	A82	A	. 4830	A83	48		. 8846	A850	. 4854	57
2.2	A86	. 48	. 4	4871	. 487	. 48	. 48	A 83	. 48	890
2.3	A	. 4890	. 4898	A901	. 490	. 4906	. 4909	. 4911	. 4913	16
2.4	. 4918	. 4920	. 4922	92	492	. 492	. 493	A932	. 49	36
2.5	A93	. 49	. 49	. 4943	4945	. 4	. 49	491	. 4951	4932
2.6	A9	. 495	. 496		. 495		. 4961		. 4963	4964
2.7	A965	. 4900	. 4967	A968	. 4909	. 4970	. 4971	. 4972	. 4973	. 4974
2.8	A974	. 4975	. 497	. 497	. 497	. 49	. 497	A979	. 49	. 4981
2.9	A9	. 4982	. 4982	A 4983	4984	. 4984	. 4985	. 4985	. 4985	. 4986
3.0	4987	. 4987	. 4987	4988	. 498	. 4988	. 4989	A 4985	. 4990	. 4990
3.1	A9	4991	. 4991	A99	499	. 498	. 4992	A992	A993	4993
3.2	4993	. 4993	. 4994	4994	994	. 4994	. 4994	4995	. 4995	. 4996
3.3	. 4995	. 4995	.4996	A99	. 499	. 498	. 4996	4996	. 4996	. 4997
3.4	A 4997	. 4997	. 4997	A997	. 499	. 498	. 4997	. 4997	. 4997	. 499
3.5	A998	. 4998	. 4998	A998	. 4998	. 4998	. 4998	4998	. 4998	. 4998

t-Distribution Table

The shadod aron is oqual to α for $t-t_{a}$.

df	t. 100	t.aso	t,008	t.mo	$t_{\text {tms }}$
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.92\%
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.306	1.782	2.179	2.681	3.055
13	1.350	1.771	2160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2.045	2.462	2.756
30	1.310	1.697	2.042	2.457	2.750
32	1.309	1.694	2.037	2.449	2.738
34	1.307	1.691	2.032	2.441	2.728
36	1.306	1.688	2.028	2.434	2.719
38	1.304	1.686	2.024	2.429	2.712
∞	1.282	1.645	1.960	2.326	2.576

table C: Chi-Squared Distribution Values for Various Right-Tail Probabilities

	Right-Tail Probability						
$d f$	0.250	0.100	0.050	0.025	0.010	0.005	0.001
1	1.32	2.71	3.84	5.02	6.63	7.88	10.83
2	2.77	4.61	5.99	7.38	9.21	10.60	13.82
3	4.11	6.25	7.81	9.35	11.34	12.84	16.27
4	5.39	7.78	9.49	11.14	13.28	14.86	18.47
5	6.63	9.24	11.07	12.83	15.09	16.75	20.52
6	7.84	10.64	12.59	14.45	16.81	18.55	22.46
7	9.04	12.02	14.07	16.01	18.48	20.28	24.32
8	10.22	13.36	15.51	17.53	20.09	21.96	26.12
9	11.39	14.68	16.92	19.02	21.67	23.59	27.88
10	12.55	15.99	18.31	20.48	23.21	25.19	29.59
11	13.70	17.28	19.68	21.92	24.72	26.76	31.26
12	14.85	18.55	21.03	23.34	26.22	28.30	32.91
13	15.98	19.81	22.36	24.74	27.69	29.82	34.53
14	17.12	21.06	23.68	26.12	29.14	31.32	36.12
15	18.25	22.31	25.00	27.49	30.58	32.80	37.70
16	19.37	23.54	26.30	28.85	32.00	34.27	39.25
17	20.49	24.77	27.59	30.19	33.41	35.72	40.79
18	21.60	25.99	28.87	31.53	34.81	37.16	42.31
19	22.72	27.20	30.14	32.85	36.19	38.58	43.82
20	23.83	28.41	31.41	34.17	37.57	40.00	45.32
25	29.34	34.38	37.65	40.65	44.31	46.93	52.62
30	34.80	40.26	43.77	46.98	50.89	53.67	59.70
40	45.62	51.80	55.76	59.34	63.69	66.77	73.40
50	56.33	63.17	67.50	71.42	76.15	79.49	86.66
60	66.98	74.40	79.08	83.30	88.38	91.95	99.61
70	77.58	85.53	90.53	95.02	100.4	104.2	112.3
80	88.13	96.58	101.8	106.6	112.3	116.3	124.8
90	98.65	107.6	113.1	118.1	124.1	128.3	137.2
100	109.1	118.5	124.3	129.6	135.8	140.2	149.5

University of Mumbai

Examination 2021 under cluster _ (Lead College: \qquad)
Examinations Commencing from 1 ${ }^{\text {st }}$ June 2021 to $10^{\text {th }}$ June 2021
Program: S.E.(Computer Engineering)
Curriculum Scheme: Rev-2019 'C' Scheme
Examination: S.E. Semester IV
Course Code: CSC401 Course Name: Engineering Mathematics IV
Time: 2 hour
Max. Marks: 80

Question Number	Correct Option (Enter either ' A ' or ' B ' or ' C ' or ' D ')
Q1.	A
Q2.	B
Q3.	C
Q4	C
Q5	A
Q6	B
Q7	D
Q8.	C
Q9.	D
Q10.	D
Q11.	A
Q12.	A
Q13.	C
Q14.	B
Q15.	C
Q16.	D
Q17.	A
Q18.	B
Q19.	C
Q20.	A

