University of Mumbai

Examination 2021 under cluster __ (Lead College: _____)

Examinations Commencing from 1st June 2021 to 10th June 2021

Draggery PE Floatroning and Tologomynymication Engineering

Program: BE Electronics and Telecommunication Engineering

Curriculum Scheme: Rev 2019 'C' Scheme Examination: SE Semester IV

Course Code: ECC401 and Course Name: Engineering Mathematics IV

Time: 2 hour Max. Marks: 80

Note: Q1 carrying 40 marks. Q2 and Q3 are carrying 20 equal marks.

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks. 2 marks each					
1.	If x is a discrete random variable with the following probability distribution					
	x 1 2 3					
	P(x) a 2a a					
	Find $P(X \le 2)$.					
Option A:						
	$\frac{1}{4}$					
Option B:	$\frac{1}{2}$					
	2 3					
Option C:	$\frac{3}{4}$					
Ontion D						
Option D:	1					
2.	$(\frac{3}{7}(2x-x^2) \ 0 < x < 2$					
	Find E(X) if X has the p.d.f $f(x) = \begin{cases} \frac{3}{4}(2x - x^2), 0 \le x \le 2\\ 0, otherwise \end{cases}$					
	(c) deller mee					
Option A:	3					
1	$\overline{2}$					
Option B:	1					
Option C:	2					
Option D:	1					
	$\overline{2}$					
3.	If X and Y are independent random variables with means 2,3 and variance 1,2					
	respectively, find the mean and variance of the random variable $Z = 2X - 5Y$					
Option A:	-11,54					
Option B:	19, 54					
Option C:	19, -8					
Option D:	-11, -8					
4.	Suppose the number of accidents occurring weekly on a particular stretch of a					
	highway follow a Poisson distribution with mean 3. Calculate the probability that					
Ontion A:	there is at least one accident this week.					
Option A:	0.6 347					
Option B:	0.9502					

Option C:	0.7275							
Option D:	0.8002							
5.	The following results were obtained from records of age (x) and systolic blood							
	pressure (y) of a group of 10 men:							
		X	y					
	mean	53	142					
	variance	130	165					
	Correlation coefficier	nt = 0.8	l					
	Estimate the blood pressure of a man whose age is 45?							
Option A:	134.78							
Option B:	130.56							
Option C:	129.56							
Option D:	137.56							
6.	A coefficient of corre							
Option A:	The relationship betw							
Option B:	The relationship betw							
Option C:	The relationship betw							
Option D:	The correlation coeff	The correlation coefficient cannot have this value.						
	TC .1		1 .1 11					
7.	If the tangent of the angle made by the line of regression of y on x is 0.6							
	and $\sigma_x = \frac{1}{2}\sigma_y$ Find the correlation coefficient between x and y.							
Option A:	- 2.5							
Option B:	0. 25							
Option C:	- 0.3							
Option D:	0. 3							
8.	Evaluate $\int_{c}^{\infty} \frac{7z-1}{(z-3)(z+5)} dz$, where c is the circle $ z =1$.							
Option A:	^ν (2-3)(2+3)							
Option 71.	2πί							
Ontion D.								
Option B:	0							
Option C:	6 πί							
Option D:	πί							
0		2						
9.	Find the residue of f	$(z) = \frac{z^2}{(z+2)(z-1)}$	$\frac{1}{(1)^2}$ at $z = -$	2				
Option A:	1/9	(Z+Z)(Z-	-1)-					
Option B:	5/9							
Option C:	1/3							
Option D:	4/9							
10.	Identify the type of si	ngularity of th	e function f	$f(z) = \frac{\sinh z}{z^7}$				
				<u> </u>				
Option A:	z = 0 is a pole of order 7 for the given function							
Option B:	z = 0 is a pole of order 6 for the given function							
Option C:	z = 0 is an essential s	ingularity						

Option D:	z = 0 is a pole of order 3 for the given function					
11.	Evaluate $\int_C \frac{e^z}{z-1} dz$ where C where c is the circle $ z = 2$.					
Option A:	2 πί					
Option B:	$2\pi ie^2$					
Option C:	$2\pi ie$					
Option D:	$\pi i e^2$					
12.	Find the value of the integral $\int_0^{1+i} (x^2 - iy) dz$ along the path y = x					
Option A:	$\frac{5-i}{6}$					
Option B:	$\frac{6}{5+i}$					
Option C:	$\frac{6}{1+5i}$					
Option D:	${6}$ $1-5i$					
option 2.	6					
13.	Find the vector orthogonal to (2.1 2) and (1.2.2)					
Option A:	Find the vector orthogonal to $(2,1,-2)$ and $(1,2,2)$ $(1,-2,1)$					
Option B:						
Option C:	(2, -2, 1) (1, -1, 1)					
Option D:	(2, 2, -1)					
14.	If $u = (3, 1, 4, -2)$ $v = (2, 2, 0, 1)$ then find $\langle u, v \rangle$ and $ u $, $ v $					
Option A:	$-6, \sqrt{30}, \sqrt{10}$					
Option B:	$-6, \sqrt{30}, \sqrt{10}$ $5, \sqrt{2}, \sqrt{6}$					
Option C:	$5, \sqrt{30}, 3$					
Option D:	$6,\sqrt{30}$, 3					
1.5	Determine which of the fellowing one subspaces of D3					
15	Determine which of the following are subspaces of R^3 $W_1 = \{(a, 0, b), a, b \in R\}$					
	$W_1 = \{(a, b, b), a, b \in R\}$ $W_2 = \{(a, b, 1), a, b \in R\}$					
Option A:	W_1 and W_2 are the subspaces of R^3					
Option B:	W_1 and W_2 are not the subspaces of R^3					
Option C:	W_1 is a subapace of R^3 but W_2 is not a subspace of R^3					
Option D:	W_1 is not a subapace of R^3 but W_2 is a subspace of R^3					
16.	Write down the matrix of the quadratic form					
	$x_1^2 + 2x_2^2 - 7x_3^2 - 4x_1x_2 + 6x_2x_3 + 8x_3x_1$					
Option A:	$\begin{bmatrix} 1 & -2 & 4 \end{bmatrix}$					
Option B:	1 4 3 -7 [1 -4 8					
Орион В.	$\begin{bmatrix} 1 & 4 & 6 \\ -4 & 2 & 6 \end{bmatrix}$					
	[8 6 –7]					

Option C:	$ \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 3 \\ 4 & 3 & -7 \end{bmatrix} $ $ \begin{bmatrix} 1 & 4 & 8 \\ 4 & 2 & 6 \\ 0 & 6 & 7 \end{bmatrix} $
0 1 5	[4 3 -7]
Option D:	
	$\begin{bmatrix} 4 & 2 & 6 \\ 8 & 6 & 7 \end{bmatrix}$
17.	Find the rank, signature, index of the transformed quadratic form
	$3y_1^2 + \frac{2}{3}y_2^2 - \frac{39}{3}y_3^2$.
Ontion A:	rank = 3, signature = 2, index = 1
Option A:	
Option B: Option C:	rank = 3, signature = 1, index = 2. rank = 2, signature = 3, index = 1.
Option C:	rank = 2, signature = 3, index = 1. $rank = 2, signature = 1, index = 3.$
Option D.	rank – 2, signatur t–1, much –3.
18.	A necessary condition for $I = \int_{x_1}^{x_2} f(x, y, y^{\parallel}, y^{\parallel}) dx$ to be an extremal is that
Option A:	$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y^{\parallel}} \right) + \frac{d^2}{dx^2} \left(\frac{\partial f}{\partial y^{\parallel}} \right) = 0$
Option B:	$\left \frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y^{\dagger}} \right) \right = 0$
Option C:	$\left \frac{\partial f}{\partial y} + \frac{d}{dx} \left(\frac{\partial f}{\partial y^{\dagger}} \right) \right = 0$
Option D:	$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y^{l}} \right) + \frac{d^{2}}{dx^{2}} \left(\frac{\partial f}{\partial y^{l}} \right) = 0$ $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y^{l}} \right) = 0$ $\frac{\partial f}{\partial y} + \frac{d}{dx} \left(\frac{\partial f}{\partial y^{l}} \right) = 0$ $\frac{\partial f}{\partial y} + \frac{d}{dx} \left(\frac{\partial f}{\partial y^{l}} \right) + \frac{d^{2}}{dx^{2}} \left(\frac{\partial f}{\partial y^{l}} \right) = 0$
19.	The functional $I=\int_a^b (y^2+12xy)dx$ has the following extremal with c_1 and c_2 as
	arbitrary constants.
Option A:	$c_1 x^3 + c_2 x$
Option B:	$x^2 + c_1 x + c_2$
Option C:	$c_1x + c_2$
Option D:	$x^3 + c_1 x + c_2$
20.	The extremal of the functional $I = \int_a^b (16y^2 - y^{\parallel^2} + x^2) dx$ is
Option A:	$y = c_1 cos2x + c_2 sin2x$
Option B:	$y = c_1 e^{2x} + c_2 e^{-2x}$
Option C:	$y = c_1 e^{2x} + c_2 e^{-2x} + c_3 \cos 2x + c_4 \sin 2x$
Option D:	$y = c_1 e^x + c_2 e^{-x} + c_3 \cos x + c_4 \sin x$

Q2. (20 Marks)	Solve any Four out of Six. 5 marks each				narks each							
	Fit a P	oisson	distril	bution	for the	followi	ng dis	tributi	on .			
A		X		0	1	2	3	4	Total			
		f		43	40	25	10	2	120			
	Obtain	the rai	nk cor	relatio	on coef	ficient fo	or the f	ollow	ing data			_
В	X	68	64	75	50	64	80	75	40	55	64	
	Y	62	58	68	45	81	60	68	48	50	70	
С	Obtain two distinct Laurent's series of $f(z) = \frac{2z-3}{z^2-4z+3}$ about $z=4$ indicating the region of convergence											
D	Construct an orthonormal basis of R^3 using Gram-Schmidt process to $S = \{(1,0,0), (3,7,-2), (0,4,1)\}$											
Е	Reduce the symmetric matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ to the diagonal form using congruent transformation and interpret the result in terms of quadratic forms											
F	Find the curve on which the functional $\int_a^b \sqrt{1+y^2} dx$ is extremum.											

Q3.	Solve any Four out of Six. 5 marks each
(20 Marks)	
	In a sample of 1000 cases, the mean of a certain test is 14 and standard deviation is 2.5 Assuming the distribution to be normal, find
A	(i)how many students score between 12 and 15?
	(ii) how many score above 18?
	(iii) how many score below 8?
	In a partially destroyed laboratory, record of an analysis of correlation data, the
	following results only are legible:
В	$\sigma_x = 3$. Regression equations: $8X - 10Y = -66$, $40X - 18Y = 214$.
D	What are: (i) the mean values X and Y,
	(ii) the correlation coefficient between X and Y,
	(iii) the standard deviation of Y
С	Evaluate $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-2)(z-3)} dz$ where C is the circle $ z = 4$
	Let V be a set of positive real numbers with addition and scalar multiplication defined as
D	$x + y = xy$ and $cx = x^c$. Show that Vis a vector space under this addition and scalar
	multiplication.
Е	Reduce the following quadratic form into canonical form.
	Q: $x_1^2 + 2x_2^2 + 3x_3^2 - 2x_1x_3 + 2x_2x_3 + 2x_2x_1$
	Heine Deadelch Die werkend verbreiche bewerden werblen.
F	Using Rayleigh -Ritz method, solve the boundary value problem
1	$I = \int_0^1 (y^{1^2} - y^2 - 2xy) dx$ with y(0)=0 and y(1)=0.

University of Mumbai

Examination 2021 under cluster __ (Lead College: _____)

Examinations Commencing from 1st June 2021 to 10th June 2021

Program: RF Floatronics and Tologommunication Engineering

Program: BE Electronics and Telecommunication Engineering

Curriculum Scheme: Rev 2019 'C' Scheme Examination: SE Semester IV

Course Code: ECC401 and Course Name: Engineering Mathematics IV

Time: 2 hour Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	С
Q2.	В
Q3.	A
Q4	В
Q5	A
Q6	C
Q7	D
Q8.	В
Q9.	D
Q10.	В
Q11.	С
Q12.	A
Q13.	В
Q14.	D
Q15.	С
Q16.	A
Q17.	В
Q18.	A
Q19.	D
Q20.	С