University of Mumbai
 Examination June 2021
 Examinations Commencing from $1^{\text {st }}$ June 2021
 Program: Information Technology
 Curriculum Scheme: Rev 2019
 Examination: BE Semester IV
 Course Code: ITC404 and Course Name: AUTOMATA THEORY

Time: 2 hour

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Which symbol is used to represent a Transition Function of Finite Automata?
Option A:	β
Option B:	δ
Option C:	Σ
Option D:	ε
2.	What is the language of Finite Automata?
Option A:	Recursive Language
Option B:	Context-Sensitive Language
Option C:	Regular Language
Option D:	Context-Free Language
3.	Number of states in NFA are
Option A:	Less than or equal to equivalent DFA
Option B:	Less than equivalent DFA
Option C:	Greater than equivalent DFA
Option D:	Greater than or equal to equivalent DFA
4.	What is the correct form of productions in Chomsky Normal Form?
Option A:	A -> aB
Option B:	A - B BC
Option C:	A -> B
Option D:	A -> Ba
5.	The language WW ${ }^{\mathrm{R}}$ is accepted by-
Option A:	Deterministic Pushdown Automata
Option B:	Non-Deterministic Finite Automata
Option C:	Deterministic Finite Automata
Option D:	Non-Deterministic Pushdown Automata
6.	The transition δ (q1,a,a) = $(q f, \varepsilon$ f of PDA is -
Option A:	Performing delete and pop operation
Option B:	Performing delete operation only
Option C:	Performing pop operation only
Option D:	Performing push operation
7.	What is the language of the Turing machine?

Option A:	Regular language
Option B:	Context free language
Option C:	Recursive enumerable language
Option D:	Context sensitive language
8.	What is the limitation of regular grammar?
Option A:	Can generate simple strings
Option B:	Can only describe regular language
Option C:	Can't generate long strings
Option D:	Too difficult to understand
9.	DFA designed to accept strings with no more than 2 a's can accept:
Option A:	abab
Option B:	abaa
Option C:	baaa
Option D:	abababab
10.	The length of Moore machine compared to Mealy machine is:
Option A:	Equal to Mealy machine for given input
Option B:	Smaller than Mealy machine for given input
Option C:	One smaller than Mealy machine for given input
Option D:	One longer than Mealy machine for given input
11.	Derivation process is one which-
Option A:	Parses given string
Option B:	Generates new string
Option C:	Convert string to right linear grammar
Option D:	Convert string to left linear grammar
12.	Language of PDA is:
Option A:	Recursively Enumerable language
Option B:	Regular Language
Option C:	Context sensitive language
Option D:	Context free language
13.	The tuple Σ in Turing machine represents-
Option A:	Tape symbol
Option B:	Output symbol
Option C:	Tape alphabet
Option D:	Input alphabet
14.	A Turing Machine can compute problems which are-
Option A:	Complex
Option B:	Simple
Option C:	Unsolvable
Option D:	Computable
15.	Which of the following languages are most suitable for implementing context free languages?
Option A:	C

Option B:	Perl			
Option C:	Assembly Language			
Option D:	Compiler language			
16.	With reference to the process of conversion of a context free grammar to CNF, the number of variables to be introduced for the terminals are: $\begin{aligned} & \text { S->AB0 } \\ & \text { A->001 } \\ & \text { B->A1 } \end{aligned}$			
Option A:	3			
Option B:	4			
Option C:	2			
Option D:	5			
17.	Next move function δ of a Turing machine $\mathrm{M}=(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q} 0, \mathrm{~B}, \mathrm{~F})$ is a mapping			
Option A:	$\delta: \mathrm{Qx} \mathrm{\Sigma}$--> $\mathrm{Qx} \times$			
Option B:	$\delta: \mathrm{Q} \times \Gamma \cdots \mathrm{---}$ Q $\times \Sigma \times\{\mathrm{L}, \mathrm{R}\}$			
Option C:	$\delta: Q \times \Sigma--->$ Q $\Gamma \times\{\mathrm{L}, \mathrm{R}\}$			
Option D:				
18.	Which of the following grammars are in Chomsky Normal Form:			
Option A:	S->AB \mid BC \mid CD, A->AB B->CD, C->2, D->3			
Option B:	S->AB, S->BCA\|0	1	2	3
Option C:	S->ABa, A->aab, B->Ac			
Option D:	S->ABa, A->AAB, B->Ac			
19.	The lexical analysis for a high level language needs the power of which one of the following machine models?			
Option A:	Turing Machine			
Option B:	Deterministic pushdown automata			
Option C:	Finite state automata			
Option D:	Non-Deterministic pushdown automata			
20.	Which of the following relates to Chomsky hierarchy?			
Option A:	Regular<CFL<CSL<Unrestricted			
Option B:	CFL<CSL<Unrestricted<Regular			
Option C:	CSL<Unrestricted<CF<Regular			
Option D:	CSL<Unrestricted<Regular<CF			

$\left.\left.\left.\begin{array}{|c|l|}\hline \text { Q2. } & \text { Solve any Four questions out of Six. } \\ \hline \text { A } & \text { Construct DFA to accept strings that ends with substring 110 for } \Sigma=\{0,1\}\end{array} \right\rvert\, \begin{array}{l}\text { Design a Moore machine which counts the occurrence of substring bab in } \\ \text { an input string for } \Sigma=\{\mathrm{a}, \mathrm{b}\} .\end{array}\right] \begin{array}{l}\text { Give Regular Expressions for } \\ \text { i) For all strings over a,b which contains exactly 3 occurrence of b over } \\ \Sigma=\{\mathrm{a}, \mathrm{b}\} \\ \text { ii) For all strings over 0,1 that starts with 10 and ends with 01 }\end{array}\right\}$

	B \rightarrow bbb Find LMD and RMD for string "ababbbba"
E	Write Short Note on Chomsky Hierarchy
F	Compare and Contrast between FA, PDA and TM

Q3.	Solve any Two Questions out of Three \quad 10 marks each
A	Convert the given grammar G to CNF. G: $\mathrm{S}->\mathrm{a}\|\mathrm{aA}\| \mathrm{B}\|\mathrm{C}, \mathrm{A}->\mathrm{aB}\| \varepsilon, \mathrm{B}$ -> Aa, C -> aCD $\mid \mathrm{a}, \mathrm{D}->$ ddd.
B	Design a Turing Machine for 2's Complement of a binary number
C	Design PDA for odd length palindrome let $\Sigma=\{0,1\}, L=\left\{W C W^{R}\right\}$ where $W \in \Sigma^{*}$

University of Mumbai

Examination June 2021
Examinations Commencing from $1^{\text {st }}$ June 2021
Program: Information Technology
Curriculum Scheme: Rev 2019
Examination: BE Semester IV
Course Code: ITC404 and Course Name: AUTOMATA THEORY

Question Number	Correct Option (Enter either 'A' or 'B' or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	B
Q2.	C
Q3.	A
Q4	D
Q5	C
Q7	C
Q8.	B
Q9.	A
Q10.	D13.
D	

Q14.	D
Q15.	C
Q16.	B
Q17.	D
Q18.	A
Q19.	C
Q20.	A

