University of Mumbai
 Examination 2020 under cluster 4 (Lead College: PCE, Panvel)

Examinations Commencing from 15 ${ }^{\text {th }}$ June 2021 to $\mathbf{2 6}^{\text {th }}$ June 2021
Program: COMPUTER ENGINEERING
Curriculum Scheme: Rev2019
Examination: SE Semester III (for Direct Second Year-DSE)
Course Code: CSC303 and Course Name: DATA STRUCTURE
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Which of the following option is true about nonlinear data structures?
Option A:	data elements are present at multiple levels.
Option B:	Garbage each element is traversable through a single run.
Option C:	data elements are sequentially connected
Option D:	Efficient utilization of memory.
2.	The operation of processing each element in the list is known as
Option A:	Creation
Option B:	Insertion
Option C:	Deletion
Option D:	Traversal
3.	A full binary tree with n leaves contains
Option A:	n - 1 nodes
Option B:	log 2 n nodes
Option C:	2 n - 1 nodes
Option D:	$2^{\text {n }}$ nodes
4.	Queue data structure is used for -
Option A:	Preorder traversal in tree
Option B:	Postorder traversal in tree
Option C:	Depth first traversal in graph
Option D:	Breadth first traversal in graph
5.	Top value in stack changes -
Option A:	While checking overflow
Option B:	While checking underflow
Option C:	Before deletion of an element from stack
Option D:	After deletion of an element from stack
6.	For which of the following operation, Linked lists are not suitable data structures?
Option A:	Linear search
Option B:	Binary search

Option C:	6
Option D:	7
13.	Which is not the valid balance factor for an AVL tree
Option A:	0
Option B:	1
Option C:	-1
Option D:	2
14.	B+ tree can contain a maximum of 7 pointers in a node. What is the minimum number of keys in leaves?
Option A:	3
Option B:	4
Option C:	5
Option D:	6
15.	Which of the following statement is not true about the doubly linked list?
Option A:	We can traverse in both the directions.
Option B:	It requires extra space
Option C:	Implementation of doubly linked list is easier than the singly linked list
Option D:	It stores the addresses of the next and the previous node
16.	Given, arr $=\{1,3,5,6,7,9,14,15,17,19\}$ and the search_key $=19$, how many comparisons are required using binary search?
Option A:	1
Option B:	2
Option C:	3
Option D:	4
17.	B-tree of order n is a order-n multiway tree in which each non-root node contains
Option A:	at most ($\mathrm{n}-1$)/2 keys
Option B:	exact ($n-1$ /2 keys
Option C:	at least 2n keys
Option D:	at least ($\mathrm{n}-1$)/2 keys
18.	Postfix expression corresponding to the infix expression "(1+4)/(8-6)*3" is
Option A:	14/86*3-
Option B:	14/86*-3+
Option C:	$14+86 /-* 3$
Option D:	14+86-/3*
19.	Which of the following trait of a hash function is most desirable?
Option A:	It should be easy to implement
Option B:	It should occupy less space
Option C:	It should cause less collisions
Option D:	It should cause more collisions
20.	Topological sort can be implemented on a?
Option A:	Linked list
Option B:	Binary tree

Option C:	Directed acyclic graph
Option	.

Q2 (20 Marks Each)	Solve any Four out of Six
A	Write a C functions to implement insertion and deletion in queue using linked list.
B	Explain deletion of a node in a binary search tree.
C	Find topological sorting sequence in the following graph:
D	Consider a hash table with size $=7$. . Using Linear probing, insert the keys $99,33,23,44,56,43,19$ into the table.
E	Define ADT. Write ADT for stack. F

Q3. (20 Marks Each) $)$	Solve any Two Questions out of Three
A	Create a Huffman tree and find Huffman codes for each character in the string "CONNECTION".
	Write a C program for Singly Linked list for performing following operations i. \quad Create SLL ii. \quadDisplay SLL iii. \quadDelete last node from SLL iv. Insert a node at start of SLL B

University of Mumbai

Examination 2020 under cluster 4 (Lead College: PCE)

Examinations Commencing from 15 ${ }^{\text {th }}$ June 2021 to $26^{\text {th }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev2019
Examination: SE Semester: III(for Direct Second Year-DSE)
Course Code: CSC303 and Course Name: Data Structure
Time: 2 hour

Question Number	Correct Option Enter either 'A' or 'B' or ' \mathbf{C}^{\prime} or ' \mathbf{D}^{\prime} '
Q1.	A
Q2.	D
Q3.	C
Q4	D
Q5	D
Q6	B
Q7	D
Q8.	B
Q9.	B
Q10.	A
Q11.	D
Q12.	D
Q13.	A
Q14.	C
Q15.	D
Q16.	D
Q17.	D
Q18.	C
Q19.	C
Q20.	

Write a C functions to implement insertion and deletion in queue using linked list.

Solution:

Let the node declaration for queue using linked list implementation is:
struct node \{
int data;
struct node *next;
\};
struct node $*$ front $=\mathrm{NULL}, *$ rear $=\mathrm{NULL}, *$ temp, ${ }^{*}$ newNode;
// Insertion function 'enqueue' for queue.
void equeue(int item)
\{
newNode=(struct node*) malloc(sizeof(struct node));
newNode->data =item;
newNode->next=NULL;
if(front==NULL)
A front=rear=newNode;
\}
else
\{ rear->next=newNode;
rear=newNode;
\}
\}
// Deletion function 'dequeue' from queue.
void dequeue()
\{
if(front==NULL)
\{
printf("queue is empty!!! Deletion not possible!!!!n");
return;
\}
else
\{
temp=front;
printf("\ndeleted item=\%d",temp->data); front=front->next; free(temp);

Consider the following example where node with value $=30$ is deleted from the BST-

Case-03: Deletion Of A Node Having Two Children-
A node with two children may be deleted from the BST in the following two ways-

Method-01:

Visit to the right subtree of the deleting node.

- Pluck the least value element called as inorder successor.

Step-02:

- Vertex-1 has the least in-degree and add it in topological order list.
- So, remove vertex -1 and its associated edges.
- Now, update the in-degree of other vertices.

Topological order list : 1

Step-03:

- Vertex-2 \& Vertex-3 has the least in-degree. So any one can be selected for removal and add that vertex in topological order list.
- So, remove vertex-2 as selected for ordering and its associated edges.
- Now, update the in-degree of other vertices.

Topological order list : 1,2

Step-04:

- Vertex -3 has the least in-degree add that vertex in topological order list.
- So, remove vertex -3 and its associated edges.
- Now, update the in-degree of other vertices.

Topological order list : 1,2,3

	Step-05: - Vertex-4 has the least in-degree add that vertex in topological order list. - So, remove vertex-4 and its associated edges. - Now, update the in-degree of other vertices. Topological order list : 1,2,3,4 (5) 0 (1) (2) Step-06: - Vertex-5 has the least in-degree add that vertex in topological order list. - So, remove vertex-5 and its associated edges. - Now, update the in-degree of other vertices. Topological order list : 1,2,3,4,5 Another possible topological ordering sequence is: 1,3,2,4,5.
D	Consider a hash table with size $=7$. Using Linear probing, insert the keys $99,33,23,44,43$ into the table. Solution: Formula with correct insertion for each key : 1Mark Hash table of size=7
E	Define ADT. Write ADT for stack. Solution: Definition: 2 Marks ADT for Stack: 3 marks

F	
	Write an algorithm to check the well-formedness of parenthesis in an algebraic expression using Stack data structure.
	Solution:
	Step 1: Scan the expression from left to right.
	Step 2: Set flag = 1
	Step 3: Repeat until each symbol in the expression is scanned
	If symbol is '(' or ' $\{$ ' or '[', push it on the stack.
	If symbol is ' $)$ ' or ' $\}$ ' or ' $]$ ', then
	If stack is empty, then set flag $=0$ Else
	pop top of the stack and place it in temp.
	If symbol is ')' and temp is either ' $\{$ ' or ' $[$ ' , then set flag $=0$ and GOTO step 5 If symbol is ' $\}$ ' and temp is either '(' or ' $[$ ', then set flag $=0$ and GOTO step 5
	If symbol is ' $]$ ' and temp is either '(' or ' $\{‘$ ', then set flag $=0$ and GOTO step 5 Step 4: If stack is not empty, then set flag=0 and GOTO step 5
	Step 5: If flag =1, then Print " Valid expression"
	Else Print "Invalid expression"
	Step 6: END

Q3	Solve any Two Questions out of Three 10 marks each						
A	Write a C program for Singly Linked list for performing following operations i. Create SLL ii. Display SLL iii. Delete last node from SLL Insert a node at start of SLL Node definition - 1M Main function - 1 M Create function - 2 M Display function - 2 M Insert at Beginning function -2 M Delete last node function- 2 M						
B	Computing frequency:1 mark Arranging and creating a nodes: 5 marks Final tree: 1 mark Assigning codes: 1mark Computing code for each character: 2 marks						
C	Draw the B-tree of order 4 created by inserting the following data arriving in sequence: $25,16,20,5,39,7,11$. Insertion of each key : 7 Marks						

	Correct Splitting: 2 marks Final tree : 1mark

