University of Mumbai Examination 2020 under cluster 4 (Lead College: PCE, Panvel)

Examinations Commencing from 15th June 2021 to 26th June 2021 Program: COMPUTER ENGINEERING Curriculum Scheme: Rev2019 Examination: SE Semester III (for Direct Second Year-DSE) Course Code: CSC303 and Course Name: DATA STRUCTURE

Time: 2 hour

=

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks						
1.	Which of the following option is true about nonlinear data structures?						
Option A:	data elements are present at multiple levels.						
Option B:	Garbage each element is traversable through a single run.						
Option C:	data elements are sequentially connected						
Option D:	Efficient utilization of memory.						
2.	The operation of processing each element in the list is known as						
Option A:	Creation						
Option B:	Insertion						
Option C:	Deletion						
Option D:	Traversal						
3.	A full binary tree with n leaves contains						
Option A:	n - 1 nodes						
Option B:	log ₂ n nodes						
Option C:	2n-1 nodes						
Option D:	2 ⁿ nodes						
4.	Queue data structure is used for -						
Option A:	Preorder traversal in tree						
Option B:	Postorder traversal in tree						
Option C:	Depth first traversal in graph						
Option D:	Breadth first traversal in graph						
5.	Top value in stack changes -						
Option A:	While checking overflow						
Option B:	While checking underflow						
Option C:	Before deletion of an element from stack						
Option D:	After deletion of an element from stack						
6.	For which of the following operation, Linked lists are not suitable data structures?						
Option A:	Linear search						
Option B:	Binary search						

Ontion C:	Conting						
Option C:	Sorting						
Option D:	traversal						
7							
7.	Stacks cannot be used to						
Option A:	evaluate an arithmetic expression in postfix form						
Option B:	implement recursion						
Option C:	convert a given arithmetic expression in infix form to is equivalent postfix form						
Option D:	allocates resources (like CPU) by the operating system						
8.	The Depth First Search algorithm has been implemented on following graph. One possible order of visiting the nodes of the graph is $ \underbrace{M}_{R} \underbrace{Q}_{Q} \underbrace{P}_{P} $						
Option A:	MRQNOP						
Option B:	NMRQPO						
Option D: Option C:	OPMQNR						
Option D:	NORMQP						
Option D.	NORMQE						
9.	Which of the following is essential for evaluating a postfix expression?						
Option A:	An operator stack						
Option B:	An operand stack						
Option D: Option C:	An operator stack and an operand stack						
Option D:	A parse tree						
10.	A tree in which, at every node the height of its left sub tree and right sub tree differ at most by one is known as						
Option A:	AVL Tree						
Option B:	Complete Binary Tree						
Option C:	Binary Search Tree						
Option D:	Threaded Binary Tree						
11.	Hash function f defined as f(key)=key mod 11, with linear probing, is used to insert the keys 37,38,72,48,98,56 into a table index starting from 0. What will be the location of key 16?						
Option A:	5						
Option B:	6						
Option C:	7						
Option D:	8						
12.	Assume a binary search tree created by inserting the values 27, 9, 23, 22, 29, 25, 15, 50, 95, 60, 40. Number of nodes in the right subtree will be						
Option A:							
Option B:	5						

Option C:	6
Option D:	7
13.	Which is not the valid balance factor for an AVL tree
Option A:	
Option R:	1
Option D:	-1
Option D:	2
14.	B+ tree can contain a maximum of 7 pointers in a node. What is the minimum
17.	number of keys in leaves?
Option A:	3
Option B:	4
Option D:	5
Option D:	6
15.	Which of the following statement is not true about the doubly linked list?
Option A:	We can traverse in both the directions.
Option A: Option B:	It requires extra space
Option D:	Implementation of doubly linked list is easier than the singly linked list
Option D:	It stores the addresses of the next and the previous node
16.	Given, arr = $\{1,3,5,6,7,9,14,15,17,19\}$ and the search_key = 19, how many
10.	comparisons are required using binary search?
Option A:	1
Option B:	2
Option D:	3
Option D:	4
17.	B-tree of order n is a order-n multiway tree in which each non-root node contains
Option A:	at most (n - 1)/2 keys
Option B:	exact (n - 1)/2 keys
Option C:	at least 2n keys
Option D:	at least $(n - 1)/2$ keys
18.	Postfix expression corresponding to the infix expression " $(1+4)/(8-6)$ * 3" is
Option A:	14/86*3 -
Option B:	14 / 8 6 *- 3 +
Option C:	14 + 86 / - *3
Option D:	1 4 + 8 6 - / 3 *
19.	Which of the following trait of a hash function is most desirable?
Option A:	It should be easy to implement
Option B:	It should occupy less space
Option C:	It should cause less collisions
Option D:	It should cause more collisions
20.	Topological sort can be implemented on a?
Option A:	Linked list
Option B:	Binary tree

Option C:	Directed acyclic graph
Option D:	Directed cyclic graph

Q2	Solve any Four out of Six5 marks	each
(20 Marks Each)		
А	Write a C functions to implement insertion and deletion in queue using linked list.	3
В	Explain deletion of a node in a binary search tree.	
С	Find topological sorting sequence in the following graph:	
D	Consider a hash table with size = 7. Using Linear probing, insert the k_{0} 99,33,23, 44, 56,43,19 into the table.	eys
Е	Define ADT. Write ADT for stack.	
F	Write an algorithm to check the well-formedness of parenthesis in an algebraic expression using Stack data structure.	

Q3.	Solve any Two Questions out of Three10 marks each					
(20 Marks Each)						
А	Create a Huffman tree and find Huffman codes for each character in the string "CONNECTION".					
В	 Write a C program for Singly Linked list for performing following operations Create SLL Display SLL Delete last node from SLL Insert a node at start of SLL 					
С	Draw the B-tree of order 4 created by inserting the following data arriving in sequence: 25,10,16,32,20,5,27,39,7,11.					

University of Mumbai

Examination 2020 under cluster 4 (Lead College: PCE)

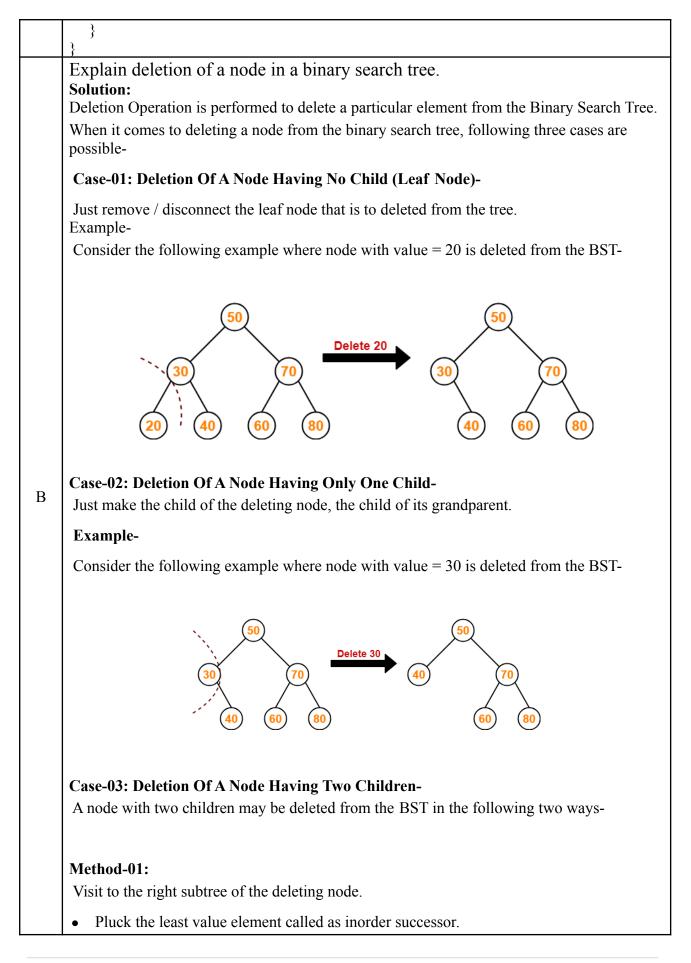
Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Computer Engineering

Curriculum Scheme: Rev2019

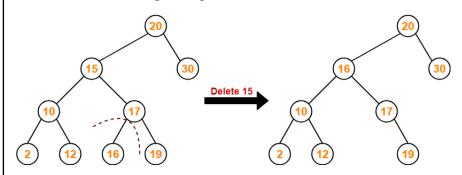
Examination: SE Semester: III(for Direct Second Year-DSE)

Course Code: CSC303 and Course Name: Data Structure


Time: 2 hour

Max. Marks: 80

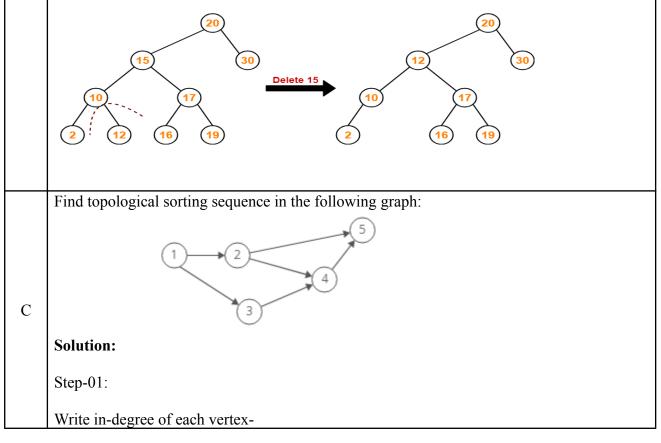
Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	А
Q2.	D
Q3.	С
Q4	D
Q5	D
Q6	В
Q7	D
Q8.	В
Q9.	В
Q10.	А
Q11.	D
Q12.	В
Q13.	D
Q14.	А
Q15.	С
Q16.	D
Q17.	D
Q18.	D
Q19.	С
Q20.	С

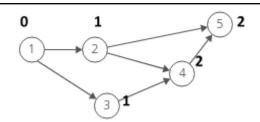

```
Q2
     Solve any Four out of Six
                                                                             5 marks each
      Write a C functions to implement insertion and deletion in queue using linked
      list.
      Solution:
     Let the node declaration for queue using linked list implementation is:
     struct node {
            int data;
            struct node *next;
            };
     struct node *front=NULL, *rear=NULL,*temp,*newNode;
     // Insertion function 'enqueue' for queue.
     void equeue(int item)
     ł
       newNode=(struct node*) malloc(sizeof(struct node));
       newNode->data =item;
       newNode->next=NULL;
       if(front==NULL)
А
         front=rear=newNode;
       }
       else
       { rear->next=newNode;
         rear=newNode;
       }
     }
     // Deletion function 'dequeue' from queue.
     void dequeue()
       if(front==NULL)
       {
         printf("queue is empty!!! Deletion not possible!!!\n");
         return:
        }
        else
        ł
         temp=front;
         printf("\ndeleted item=%d",temp->data);
         front=front->next;
         free(temp);
```


• Replace the deleting element with its inorder successor.

Example-

Consider the following example where node with value = 15 is deleted from the BST-

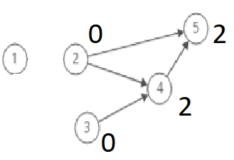



Method-02:

- Visit to the left subtree of the deleting node.
- Pluck the greatest value element called as inorder predecessor.
- Replace the deleting element with its inorder predecessor.

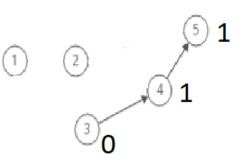
Example-

Consider the following example where node with value = 15 is deleted from the BST-



Step-02:

- Vertex-1 has the least in-degree and add it in topological order list.
- So, remove vertex-1 and its associated edges.
- Now, update the in-degree of other vertices.


Topological order list : 1

Step-03:

- Vertex-2 & Vertex-3 has the least in-degree. So any one can be selected for removal and add that vertex in topological order list.
- So, remove vertex-2 as selected for ordering and its associated edges.
- Now, update the in-degree of other vertices.

Topological order list : 1,2

Step-04:

- Vertex-3 has the least in-degree add that vertex in topological order list.
- So, remove vertex-3 and its associated edges.
- Now, update the in-degree of other vertices.

Topological order list : 1,2,3

	 Step-05: Vertex-4 has the least in-degree add that vertex in topological order list. So, remove vertex-4 and its associated edges. Now, update the in-degree of other vertices. Topological order list : 1,2,3,4
	(1) (2) (5) O (4) (3)
	 Step-06: Vertex-5 has the least in-degree add that vertex in topological order list. So, remove vertex-5 and its associated edges. Now, update the in-degree of other vertices. Topological order list : 1,2,3,4,5
	Another possible topological ordering sequence is: 1,3,2,4,5.
D	Consider a hash table with size = 7. Using Linear probing, insert the keys 99,33,23, 44, 43into the table.Solution:Formula with correct insertion for each key : 1MarkHash table of size=7Index0123456
	Key 99 23 44 43 33
Е	Define ADT. Write ADT for stack. Solution: Definition: 2 Marks ADT for Stack: 3 marks

	Write an algorithm to check the well-formedness of parenthesis in an algebraic expression using Stack data structure.
	Solution:
	Step 1: Scan the expression from left to right.
	Step 2: Set flag = 1
	Step 3: Repeat until each symbol in the expression is scanned
	If symbol is '(' or '{' or '[', push it on the stack.
	If symbol is ')' or '}' or ']', then
F	If stack is empty, then set flag = 0
	Else
	pop top of the stack and place it in temp.
	If symbol is ')' and temp is either '{' or '[', then set flag=0 and GOTO step 5
	If symbol is '}' and temp is either '(' or '[', then set flag=0 and GOTO step 5
	If symbol is ']' and temp is either '(' or '{', then set flag=0 and GOTO step 5
	Step 4: If stack is not empty, then set flag=0 and GOTO step 5
	Step 5: If flag =1, then Print "Valid expression"
	Else Print "Invalid expression"
	Step 6: END

Q3	Solve any Two Q	uestions o	out of Thre	ee			10 mark	s each
А		SLL y SLL last node a node at s 1M M 2M - 2M g function	from SLL tart of SLI – 2M		orming fol	lowing ope	erations	
В	Create a Huffma "CONNECTION" Char. Frequency Computing freque Arranging and creation Final tree: 1 mark Assigning codes: Computing code f	'. <u>C</u> 2 ency:1 mar eating a no 1mark	O 2 k des: 5 mar	N 3 ks	edes for e E 1	ach chara	I I I	string
С	Draw the B-tree of in sequence: 25,10 Insertion of each	5,20,5,39,7	7,11.	nserting th	e followin	g data arriv	ving	

|--|