APPENDIX-III

Question Paper Template (For Online Examination)

K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22

(Autonomous College Affiliated to University of Mumbai)

End Semester Exam

Nov – Dec 2021

(B.Tech) Program: Artificial Intelligence & Data science

Examination: SY Semester: III

Course Code: 1UAIC302 and Course Name: Discrete structures and Graph Theory

Duration:02 Hours Max. Marks: 45

Instructions:

- (1)All questions are compulsory.
- (2)Draw neat diagrams wherever applicable.
- (3) Assume suitable data, if necessary.

		Max. Marks	СО	BT level
Q 1	Solve any 5 questions out of six.	15		
i)	Given that value of $P \rightarrow q$ is true, can you determine the value of $\overline{P}(P \leftrightarrow q)$	3	1	Analysis
	1 (1 < > 9)			

ii)	Comment Whether the Function f is one to one or onto.	3	2	Apply
	Consider Function F: $N \rightarrow N$ where N is set of Natural numbers including Zero			
	$f(j) = j^2 + 2$			
iii)	Let $A=\{A,b,c\}$ show that $(P(A),\subseteq)$ is a Poset .Draw the Hasse diagram	3	3	Apply
iv)	Two dice are rolled, find the probability that the sum is	3	4	Apply
	(i) Equal to 1 (ii) If Equal to 4 (iii) Less than 13			
v)	Let $H = \{ [0]_6, [3]_6 \}$ find the left and right cosets in group Z_6 . Is H a normal subgroup of group of Z_6	3	5	Analysis
vi)	1) Is every Eulerian graph a Hamiltonian? Explain with necessary graph	3	6	Apply
Q.2	Solve any three questions out of four.	15		
i)	If p is True and q is False find the truth value of the following Proposition p:T,q:F a) ~(p↔q)∧ p b) ~(p↔q)∨~~p	5	1	Analysis
ii)	Draw the Hasse diagram of D60.Also find whether it is a lattice.	5	3	Apply
iii)	Define Euler Path, Euler Circuit, Hamiltonian Path and Hamiltonian Circuit. Determine if following diagram has Euler Path, Euler Circuit, Hamiltonian Path and Hamiltonian Circuit and state the path/circuit.	5	6	Apply
	o o			

,

iv)	Find PDNF of the following $ [((p \land \overline{q}) \lor r) \lor (p \lor \overline{q})] \land r $	5	1	Analysis
Q.3	Solve any three questions out of four.	15		
i)	Let A=B=R the set of real numbers. Let f: A o B be a given by the formula $f(x) = 2x^3 - 1$ and Let f: A o B be a given by $g(y) = \sqrt[3]{\frac{1}{2}y + \frac{1}{2}}$ Show that f is a bijection between A and B and g is bijection between B and A	5	2	Apply
ii)	Use and draw a tree diagram to determine the number of subset of (3,7,9,11,24) with that sum of the elements in the subset is less than 29.	5	4	Apply
iii)	Let G be the set of the real number and Let a,b=ab/2.show that (G,*) is a abelian group	5	5	Analysis
iv)	Let $f(x) = x + 2$, $g(x)=x-2$ and $h(x) - 3x$ for $x \in \mathbb{R}$ where $\mathbb{R} = \text{set of real numbers}$ Find $(g \circ f)$, $(f \circ g)$, $(g \circ g)$, $(f \circ h)$, $(h \circ g)$, $(h \circ f)$, $(f \circ h \circ g)$	5	2	Apply

.