

K J Somaiya Institute of Engineering and Information Technology

An Autonomous Institute Affiliated to University of Mumbai

Question Paper Pattern(For Online Examination-Max.Marks:60)

K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22(Autonomous College Affiliated to University of Mumbai)

End Semester Exam

Nov -Dec2021

B.Tech-Program

Examination: TY Semester V

Course Code: 1UCEC501 and Course Name: Theoretical Computer Science Duration:03Hours Max.Marks:60

Instructions:

- (1) All questions are compulsory.
- (2) Draw neat diagrams wherever applicable
- (3) Assume suitable data, if necessary.

Q.No.	Question	Max.M
Q1	Solve any six questions out of eight:	12
i)	What is deductive proof.	2
ii)	Explain regular expression with an example.	2
iii)	When we say a problem is decidable? Give an example of undecidable problem?	2
iv)	What are the applications of pumping lemma.	2
v)	Explain CFL with an example	2 -
vi)	Define Deterministic PDA. What are the components of PDA?	2
vii)	What is the language accepted by TM? Write down the application of TM?	2
viii)	Give the applications of finite state automata.	2
Q.2	Solve any four questions out of six.	16
i)	State that whether a following Language is Regular or not. $L = \{WW^R \mid W =2 \text{ over } \sum = \{a,b\}\}$	4
ii)	Start Q E E S	4
	Convert the following NFA with ϵ moves to DFA without ϵ moves.	

iii)	Design a multi head Turing Machine for checking whether a binary string is a palindrome or not. Show the ID for 1001	4
-	same as a partitude of flot. Show the ID for 1001	

K J Somaiya Institute of Engineering and Information Technology An Autonomous Institute Affiliated to University of Mumbai

iv)	Define Pumping Lemma for Regular Languages. Prove that the language $L = \{an: n \text{ is a prime number}\}$ is not regular	4	T
v)	Construct PDA to accept all strings of 0's and 1's such that number of 1's is less than number of 0's by final state method.	4	1
vi)	What is the language accepted by the following finite automata	4	
Q.3	Solve any two questions out of three.	16	T
i)	Design finite state machine to add 2 binary numbers of equal length.	8	
ii)	Construct the PDA accepting the language L={a²nb n n>=1}	8	
iii)	Illustrate the Turing machine for computing f(m, n)=m-n (proper subtraction).	8	
Q.4	Solve any two questions out of three.	16	
i)	Construct PDA from the following Grammar. S → aB B → bA/b A → aB	8	
ii)	Design regular grammars for the following languages. i) Strings of a's and b's having strings without ending with ab. ii) Strings of 0's and 1's with three consecutive 0's.	8	
iii)	Give proof for the statement: if L is a context free language, then can we construct a pda A accepting L by empty store, i.e. L=N(A).	8	