Branch: AI-DS

Subject: Operating System

SEM: IV Correction in

Q.4 ii) new process with size is given as

2K,8K,4K,5K,6K

K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai) End Semester Exam

April - May 2022

(B. Tech) Program: Artificial Intelligence and Data Science

Examination: SY Semester: IV

Course Code: 1UAIC404 and Course Name: Operating System

Duration: 03 Hours

Max. Marks: 60

Instructions:

(1)All questions are compulsory.

(2)Draw neat diagrams wherever applicable.

(3) Assume suitable data, if necessary.

•		Max. Marks	СО	BT level
Q 1	Solve any six questions out of eight:	12	TAR S	an salmate
i)	What are the operating system responsibilities for Memory management?	2	CO1	Understanding
ii)	List types of scheduling algorithms and briefly define	2	CO2	Remembering
	anyone.	Daylain	i sii i	ermon-sigW X
iii)	Show that, if the wait() and signal() semaphore operations are not executed automatically, then mutual exclusion may be violated.	2	CO3	Understanding
iv)	What are the different methods of deadlock prevention?	2	CO3	Understanding
4	What are the distinctions among logical, relative and physical addresses?	2	CO4	Understanding
vi)	What is the difference between a page and a segment?	2	CO4	Understanding
vii)	What is a Two level directory?	2	C05	Understanding
viii)	Define disk scheduling and list type of disk scheduling algorithms.	2	CO6	Remembering

Q.2	Solve any four questions out of six.	16			
i)	Explain in detail Linux shell with its types?	4	CO1	Understanding	
ii)	Explain thread with help of suitable examples.	4	CO2	Understanding	
iii)	R_1 P_2 R_3	4	CO3	Analyzing	
	P ₁				
	In above RAG, Find if the system is in a deadlock state otherwise find a safe sequence.	la la laco	an Junio	Solve ans so	
iv)	What is the difference between internal and external fragmentation?	4	CO4	Understanding	
v)	Write short on "File structure"	4	CO5	Understanding	
vi)	What is the difference between logical I/O and device I/O?	4	CO6	Understanding	
Q.3	Solve any two questions out of three.	16			
i)	Explain in detail the producer-consumer problem with examples.	8	CO3	Understanding	
ii)	Explain multithreading and its models.	8	CO2	Apply	
iii)	Given the following state for the Banker's Algorithm. 6 processes P0 through P5	8	CO3	Understanding	
	4 resource types: A(15 instances); B(6 instances); C(9 instances); D(10 instances)	tellam	1 ill. wad	Self-univel Application	

Snapsho	t at t	ime 7	ro:				Hu-	gotte by	hit sa Turo	er salt uta	eriod & Impact
Available											THE DESCRIPTION OF THE PARTY OF
6 3 5	4										
	Current allocation Maximum demand									alest diseas	
Process	А	В	C	D	A	В	С	D			
PO	2	0	2	1	9	5	5	5			
P1	0	1	1	1	2	2	3	3			
P2	4	1	0	2	7	5	4	4			
Р3	1	0	0	1	3	3	3	3 2			
P4	1	1	0	0	5	2	2	1			
P5	1	0	1	1	4	4	4	4			L Linear La
a) Calculate the Need matrix.b) Show that the current state is safe, that is, show a safe sequence of processes.c) Given the request (3,2,3,3) from Process P5. Should this request be granted? Why or why not?									ie		
Solve any two questions out of three.									16		Destruction 1
What is the need of page replacement? Consider following reference string 8,1,2,3,1,4,1,5,3,4,1,4,3,2,3,1,2,8,1,2 Find the number of Page Faults with FIFO, LRU, optimal page replacement with THREE frames which are empty initially. Which algorithm gives the minimum number of page faults.								al	C04	Apply	
A variable partition memory system has at some point in time the following holes sizes in the given order: -20K,15K,40K,60K,10K,25K. A new process is to be							8	C04	Apply		

	loaded. Which hole size would be filled using best-fit, first-fit and worst fit respectively?			
iii)	Consider a disk with 200 tracks and the queue has random requests from different processes in the order: 55, 58, 39, 18, 90, 160, 150, 38, 184 Initially the arm is at 100. Find the Average Seek length using FIFO, SSTF, SCAN and C-SCAN algorithm.	8	C06	Apply

parties can be supplied by the will be a

demand the Committee of the Committee of