K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22

(Autonomous College Affiliated to University of Mumbai)

End Semester Exam

May - June 2022

(B.Tech/M.Tech.) Program: Electronics and Telecommunication

Examination: SY Semester: IV

Course Code: 1UEXC405

and

Course Name: Signals and Systems

Max. Marks: 60

Duration: 03 Hours

Instructions:

(1) All questions are compulsory.

(2)Draw neat diagrams wherever applicable.

(3) Assume suitable data, if necessary.

Q No.	Questions	Max. Marks	СО	BT level
Q1	Solve any six questions out of eight.	12	-	-
i)	Explain any two elementary signals with mathematical equation and graphical plot.	2	CO 1	U
ii)	Sketch the signal $x(t+6)$ and $x(3t)$	2	CO 1	U
		best		
iii)	State relation of ESD and PSD with Cross-correlation	2	CO 2	U
iv)	Explain relation between Z transform and DTFT	2	CO3	U
v)	Explain CTFS and DTFS.	2	CO3	U
vi)	Define Fourier transform and Inverse Fourier transform.	2	CO4	U
vii)	Find initial value and final value of 1/s+2	2	CO5	U
viii)	What is the need of the Z- transform and advantages of the z-transform.	2	CO6	U

Q.2	Solve any four questions out of six.	16		
i)	Find Energy and Power of Signal: (i) $x[n] = \cos (\pi n)$ $-4 \le n \le 4$ otherwise $x[n] = 0$ (ii) $x(t) = \cos wt$	4	СО	1 Al
ii)	Compute Linear convolution of the following sequence: $x[n] = \{1,2,3,1\}, h[n] = \{1,2,2,-1\}$	1 4	СО	2 AF
iii)	Find the fourier series of a periodic signal $f(t) = V$, $0 < t < T/2$ = 0, $T/2 < t < T$	4	COS	3 AP
iv)	Obtain Fourier transform of a dc signal	4	00	
V)	Find Laplace transform of d/dt sin t u(t).	4	CO4	-
Vi)	The impulse response of DT system is given by $h(n) = \{1,2,3\}$ and output response is given by $y(n) = \{1,1,2,-1,3\}$. Using z-transform determine $x(n)$ by long division method.	4	C06	-
Q.3	Solve any two questions out of three.	16		-
i)	For the given system y[n] = nx[n], determine whether it is: 1. Memoryless 2.Causal 3. Linear 4.Time-invariant	8	CO 1	AP
ii)	Compute Linear convolution using direct computation method and tabular method of the following sequence: $x[n] = \{1,2,4\}, h[n] = \{1,1,1\}$	8	CO 2	AP
iii)	State any eight properties of Fourier transform. Give proof of Frequency Shifting property	8	CO4	AP
2.4	Solve any two questions out of three.	16		
i)	Find auto-correlation, power spectral density and power of the following signal: $x(t) = 3 + 4 \sin(10\pi t + 30^{\circ})$	8	CO 2	AP
	Using Laplace transform determines the complete response of the system. The differential equation of the system is given by $d^2y(t)/dt^2 + 6dy(t)/dt + 8y(t) = dx(t)/dt + x(t)$ with $y(0) = 1$. $dy(0)/dt = 3$ for input $x(t) = u(t)$.	8	CO5	AP
i)	Find the response of the time invariant system with impulse response $h[n] = \{1,2,1,-1\}$ to an input signal $x[n] = \{1,2,3,1\}$ using convolution as well as using z-transform. Verify your answers.	8	CO6	AP