K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Subject Code: CEC501

Subject Name: Theory of Computer Science

Date:

Examination: TY Semester: V

Course Code: CEC501

and Course Name: Theory of Computer Science

Duration: 2.5 Hours

Max. Marks: 60

Instructions:

(1)All questions are compulsory.

(2)Draw neat diagrams wherever applicable.

(3)Assume suitable data, if necessary.

0.1		Max. Marks	СО	BT
Q1	Solve any six questions out of eight:	12		
i)	Differentiate between DFA and NFA.	2	CO1	U
ii)	Design a Moore machine to decrement a binary number	2	COI	An
iii)	Give regular expression for a set of all strings over {0,1} with even number of 1's followed by odd number of 0's	2	CO2	An
iv)	Explain decision properties of regular languages.	2	CO2	Ü
v)	Eliminate Unit productions from S->ABA BA AA AB A B A->aA a B->bB b	2	CO3	Ap
vi)	Difference between DPDA and NPDA.		CO4	U
vii)	Explain Universal Turing machine.	2	CO5	U
viii)	Differentiate between partially decidable languages and undecidable languages	2	CO6	U
Q.2	Solve any four questions out of six.	16		
	Design a DFA which can accept a ternary number divisible by 4	4	CO1	An

lii)	b q ₂ b a q ₃	4	CO2	An
	Give Regular expression for the given FSM using Arden's Theorem.			
iii)	What is ambiguous grammar? Check whether following grammar is ambiguous or not? $S \rightarrow aS \mid \epsilon$ $S \rightarrow aSbS$	4	CO3	Ap
iv)	Design Push Down Automata for a ²ⁿ b ⁿ for n>0.	4	CO4	An
v)	Design a Turing machine to compare two numbers, which will produce the output L if first number is less than the second number, output G if first number is greater than the second number and E otherwise.	4	CO5	An
vi)	Explain Post Correspondence Problem with an example	4	C06	U
Q.3	Solve any two questions out of three.	16		
i)	Convert NFA with ε into its equivalent DFA. Start q_0 q_3 q_4 q_4 q_4 q_4 q_4 q_5 q_6 q_7 q_8 q_8 q_9 q	8	C01	Ap
ii)	Design NPDA for ww^R where $w \in (a,b)^*$.	8	CO4	An
iii)	Design a Turing machine for multiplication of two unary numbers.	8	CO5	An
Q.4	Solve any two questions out of three.	16		
i)	Explain the closure properties of regular languages.	8	CO2	U

ii)	Convert	following CF	FG to GNF			8	CO3	Ap
	S -> AA : A -> SS t	a						
iii)	Construct the minimum state automata equivalent to given DFA				8	CO1	An	
			0	1				
		->q ₀	q ₁	q_0				
		q_1	q_0	q_2				
		q_2	q_3	q_1				
		*q ₃	q_3	q_0				
		q_	q_3	q_5				
		q ₅	q_6	q_4				
		96	q_5	96				
		97	q_6	q_3				