K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov - Dec 2023

(B. Tech) Program: Electronics and Telecommunication Engineering Scheme: III II

Examination: LY Semester: VII

Course Code: EXC701 and Course Name: Microwave Engineering Date of Exam: 4th Dec. 2023 Duration: 2.5 Hours Max. Marks: 60

Instructions:

(1) All questions are compulsory.

(2) Draw neat diagrams wherever applicable.

Q	1 Solve and 1	Max Mark		O 1
	1 Solve any six questions out of eight:	12		
i)	Define S-parameters. Why S-Parameters are required for the characterization of network at microwave frequency?	02	1	
ii)	What are ferrites and give its properties?	02		
iii)	Summarize the drawbacks of klystron amplifiers. Explain the concept of velocity modulation using Applegate diagram.	02	4	I U
v)	What is TWT? What do you mean by SWS? List the different types of SWS? Explain the amplification process in TWT in short.	02	4	U
)	What are the applications of TRAPATT devices?	02	1 2	
i)	Explain what do you meant by RADAR range?	02	3	R
ii)	Compare the rectangular and circular waveguide?	02	6	U
ii)	Explain the design of circulator using two magic tee and phase shifter.	Light of	2	U
.2	Solve any four questions out of six.	16	2	U
	What is mode jumping and how it is avoided in magnetron. Also, explain the frequency pushing and pulling.	04	4	U
	Construct a microstrip line on a 0.5 mm alumina substrate (ε_r = 9.9, $\tan\delta$ =0.001) for a 50 Ω characteristic impedance. Select the length of this line required to produce a phase delay of 270° at 10 GHz.	04	1	Ap
	Explain the characteristics and applications of microwaves.	04	16	T.T.
	Explain working of Tunnel diode and TRAPATT diode.	04	1,6	U
	Explain the measurement of frequency using microwave bench set up.	04	5	U U
	Construct the S-matrix of Magic tee.	04		U

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov - Dec 2023

(B. Tech) Program: Electronics and Telecommunication Engineering Scheme: Examination: LY Semester: VII

Course Code: EXC701 and Course Name: Microwave Engineering

4th Dec. 2023 Date of Exam: Duration: 2.5 Hours Max. Marks: 60

Q.3	Solve any two questions out of three.	16	1 3 3 5 1 5 1	
i)	Solve a matching network using single shunt short-circuited stub as a tuning element to match a load impedance of $Z_L = 73$ - j80 Ω to a 50 Ω Ohm transmission line. (Use smith chart)	08	1	Ap
ii)	List various modes of Gunn diode. Give classifications for these modes and explain the working of all modes.	08	3	U
iii)	Explain various methods of the measurement of antenna gain.	08	5	U
Q.4	Solve any two questions out of three.	16	77	
i)	Derive the wave equation for a TE wave and obtain all the field components in a circular waveguide. An air-filled circular waveguide having an inner radius of 1 cm is excited in the dominant mode at 10 GHz. Solve: (a) The cut off frequency of the dominant mode. (b) Guide wavelength (c) Wave impedance. Find the bandwidth for operation in dominant mode only.	08	2	Ap
i)	Construct the equation of velocity modulation in klystron. Identify the importance of beam coupling coefficient? Also explain the concept of velocity modulation.	08	4	Ap
i)	List the medical application of Microwaves and explain any one in brief.	08	6	U