complitials.

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Supplementary Examination

Scheme: II

Examination: SY Semester: IV Course Code: CEC401, AIC401, ITC401

Course Name: Applications of Mathematics in Engineering-II

Date of Exam: 23/08/2023

Duration: 2.5 Hours

Max. Marks: 60

Instructions:

(1)All questions are compulsory.

(2)Draw neat diagrams wherever applicable.

(3) Assume suitable data, if necessary.

(4) Use of Statistical Tables permitted.

	se of Statistical Tables permitted.	Max. Marks	СО	BT level
Q 1	Solve any six questions out of eight:	12		
i)	Find the eigenvalues of $A^3 - 3A^2 + A$, where A is $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$	2	1	Ap
ii)	$\int_C (z+1)dz$ where C is the boundary of square whose vertices are $z=0, z=1, z=1+i$, $z=i$.	2	2	Ap
iii)	Verify whether the Pythagorean theorem is applicable for $u=(-3,-5,-2)$ and $v=(1,2,-3)$	2	3	Ap
iv)	If X is a normal variate with mean 10 and standard deviation 4, find $P(5 \le X \le 18)$	2	4	Ap
v)	The mean height of soldiers is 68.22" with variance 10.8". Find the expected number of soldiers in a regiment of 1000 whose height will be more than 6" (Area from z=0 to z=1.15 is 0.3749)	2	4	Ap
	Convert the following LPP into standard form			
vi)	$Maximize Z = 3x_1 + 4x_2 - 2x_3$	2	5	Ap
	Subject to $6x_1 - 4x_2 \le 0$, $3x_1 + x_2 + 4x_3 \ge 11$, $4x_1 + 3x_2 \le 0$	*		
vii)	Find the stationary point of the function $z = 2x_1 + x_3 + 3x_2x_3 - x_1^2 - 3x_2^2 - 3x_3^2 + 17$	2	6	Ap
viii)	If A is a square matrix of order 2 with $ A = 1$ then prove that A and A^{-1} have the same eigenvalues.	2	1	Ap

-	•			
Q.2	Solve any four questions out of six.	16		
i)	For the matrix = $\begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$, prove that $A^{-1} = A^2 - 5A + 9I$	4	1	Ap
	Evaluate $\int_C \frac{2z+3}{z} dz$ where C is		The second	
ii)	(i) the upper half of the circle $ z = 2$ (ii) the lower half of the circle $ z = 2$	4	2	Ap
iii)	If $u = (2,2,-3), v = (4,3,-1)$. Find (i) $ 2u + 3v $ (ii) $\frac{(u-v)}{ u-v }$	4	3	Ap
iv)	Solve following Linear programming problems by simplex method. Maximize $z = 7x_1 + 5x_2$, subject to $-x_1 - 2x_2 \ge -6$, $4x_1 + 3x_2 \le 12$	4	5	Ap
v)	Using Lagrange's multipliers, solve the following NLPP Optimise $z = 4x_1 + 8x_2 - x_1^2 - x_2^2$. Subject to $x_1 + x_2 = 2$, $x_1, x_2 \ge 0$.	4	6	Ap
vi)	A machine is designed to produce insulating washers for electrical devices of average thickness of 0.025 cms. A random sample of 10 washers was found to have average thickness of 0.024 cms., with SD of 0.002 cms. Test the significance of the deviation.	4	4	Ap
Q.3	Solve any two questions out of three.	16		
i)	Find the eigenvalues and eigenvector of $\begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$	8	1	Ap
ii)	Evaluate $\int_C \frac{z^2+4}{(z-2)(z+3i)} dz$ where C is the circle (i) $ z+1 = 2$ (ii) $ z-2 = 2$	8	2	Ар
iii)	Maximize $z = 10x_1 + 6x_2 + 5x_3$, subject to $x_1 + x_2 + x_3 \le 100$, 10 $x_1 + 4x_2 + 5x_3 \le 600$, $2x_1 + 2x_2 + 6x_3 \le 300$ $x_1, x_2, x_3 \ge 0$. Use Big M method to solve following LPP	8	5	Ap
Q.4	Solve any two questions out of three.	16		
i)	Let R^4 have the Euclidean inner product. Use Gram-Schmidt process to transform the basis of subspace $\{u_1, u_2, u_3\}$ into orthonormal basis, where	8	3	Ap

	$\mathbf{u}_1 = (1,1,1,1), \mathbf{u}_2 = (1,2,4,5), \mathbf{u}_3 = (1,-3,-4,-2)$			
	The following are the gain in weights of cows fed on two types of diets X and Y.	8	4	Ар
ii)	Diet X: 30, 37, 35, 37, 29, 19, 37			
11)	Diet Y: 29, 39, 27, 35, 47, 37, 45, 35, 37, 40			
	Test at 5% level of significance whether the diets differ as regards their effect on mean increase in weight.			
iii)	Using Lagrange's multipliers, solve the following NLPP	8	6	Ap
	Optimise $z = 4x_1^2 - x_2^2 - x_3^2 - 4x_1x_2$. Subject to $x_1 + x_2 + x_3 = 15$, $2x_1 - x_2 + 2x_3 = 20$, $x_1, x_2, x_3 \ge 0$.		7 3	
