K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai) April – May 2022-23 Program: B.Tech. Scheme: II Examination: FY Semester: I Course Code: BSC101 and Course Name: Engineering Mathematics I Date of Exam: 22/142015 Duration: 2.5 Hours Max. Marks: 60 | 7 | | | | | | | |-----|---|----|-----|-----|-----|----| | - 1 | n | ST | 111 | cti | ion | C. | | | | | | | | | (1) All questions are compulsory. (2) Draw neat diagrams wherever applicable. (3) Assume suitable data, if necessary. All logarithms are taken with base e. | | $= x^2$, prove and $= (a^2 - 4)y_B = 0$. | | СО | BT
level | |-------|---|----|-----|-------------| | Q1 | Solve any six questions out of eight: | 12 | | | | i) | Prove that $(1 + i\sqrt{3})^8 + (1 - i\sqrt{3})^8 = -2^8$. | | C01 | A | | ii) | If $x + \frac{1}{x} = 2\cos\theta$, $y + \frac{1}{y} = 2\cos\phi$, then find the value of $xy + \frac{1}{xy}$. | 02 | C01 | A | | iii) | Show that $\left(\frac{1+\tanh x}{1-\tanh x}\right)^3 = \cosh 6x + \sinh 6x$. | 02 | C02 | A | | iv) | Separate into real and imaginary parts of ilog(1+i). | 02 | C02 | A | | v) | If $u = e^{xy}$, where $x = t cost$, $y = t sint$ find $\frac{du}{dt}$ at $t = \frac{\pi}{2}$. | 02 | C03 | A | | vi) | If $u = \left(\frac{x}{y}\right)^{\frac{y}{x}}$, find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$. | 02 | C03 | A | | vii) | Find all the stationary points of $f(x,y) = xy(3-x-y)$. | 02 | C04 | A | | viii) | Determine whether the following matrix is unitary or not $A = \frac{1}{2} \begin{bmatrix} \sqrt{2} & -i\sqrt{2} & 0 \\ i\sqrt{2} & -\sqrt{2} & 0 \\ 0 & 0 & 2 \end{bmatrix}.$ | | C05 | A | | Q.2 | Solve any four questions out of six. | 16 | T | | |) | If $\cos 4\theta = a \cos^4 \theta + b \cos^2 \theta \sin^2 \theta + c \sin^4 \theta$, find the value of a, b and c . | | C01 | A | | i) | Prove that $\sinh^{-1}(\tan \theta) = \log \tan \left(\frac{\pi}{4} + \frac{\theta}{2}\right)$. | 04 | C02 | A | ## K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai) April – May 2022-23 Program: B.Tech. Scheme: II Examination: FY Semester: I Course Code: BSC101 and Course Name: Engineering Mathematics I Date of Exam: 21 14 202) Duration: 2.5 Hours Max. Marks: 60 | iii) | If $u = \sinh^{-1}\left(\frac{x^3 + y^3}{x^2 + y^2}\right)$, prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -\tanh^3 u$. | | C03 | A | |------|---|----|-----|------| | iv) | If $y = 2x\sqrt{1 - x^2}$, prove that $(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} - (n^2 - 4)y_n = 0$. | 04 | C04 | A | | v) . | Find the points on the curve $xy^2 = 54$ which are nearest to the origin. | 04 | C04 | A | | vi) | Find the rank of the following matrix by reducing to normal form. $A = \begin{bmatrix} 1 & 2 & -1 & 3 \\ 3 & 4 & 0 & -1 \\ -1 & 0 & -2 & 7 \end{bmatrix}.$ | 04 | C05 | A | | Q.3 | Solve any two questions out of three. | 16 | | | | i) | If $\cos \alpha + \cos \beta + \cos \gamma = 0$, and $\sin \alpha + \sin \beta + \sin \gamma = 0$ prove that
(i) $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(\alpha + \beta + \gamma)$
(ii) $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3\sin(\alpha + \beta + \gamma)$ | 08 | CO1 | A | | ii) | Show that $\tan^{-1}\left(\frac{x+iy}{x-iy}\right) = \frac{\pi}{4} + \frac{i}{2}\log\left(\frac{x+y}{x-y}\right)$. | 08 | CO2 | A | | iii) | Investigate for what value of λ , the equations below has a solution and solve them in each case. $x + 2y + z = 3$, $x + y + z = \lambda$, $3x + y + 3z = \lambda^2$. | 08 | CO5 | A | | Q.4 | Solve any two questions out of three. | 16 | | ing. | | i) | If $u = \frac{x^4 + y^4}{x^2 y^2} + x^6 \tan^{-1} \left(\frac{x^2 + y^2}{x^2 + 2xy} \right)$, find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ at $(x, y) = (1, 2)$. | 08 | CO3 | A | | ii) | The temperature $T(x, y, z)$ at any point in the space is $T = 400xyz^2$.
Find the highest temperature on the surface of the sphere $x^2 + y^2 + z^2 = 1$. | 08 | CO4 | A | | iii) | Find for what values of k , the set of equations $2x - 3y + 6z - 5t = 3$, $y - 4z + t = 1$, $4x - 5y + 8z - 9t = k$, has 1) no solution, 2) infinitely many solutions, Also find solution in each case. | 08 | CO5 | A |