supplimentary Exam

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Program: B.Tech. Scheme: III
Examination: FY Semester: I

Course Code: BSC101 and Course Name: Engineering Mathematics I

Date of Exam: 23 02 2024

Duration: 2.5 Hours

Max. Marks: 60

(1) A	uctions: Il questions are compulsory. ssume suitable data, if necessary.		1 S 2	
	takins by Gapts-Seidel method + 10y + 2'= 13,2x + 2y + 10z = 14,	Max. Marks	СО	BT level
Q1	Solve any six questions out of eight:	12	vi yas	ov koz
i)	If $x = \cos \theta + i \sin \theta$, then find the value of $x^n + \frac{1}{x^n}$.	2	gn1eu	A
ii)	Find the value of $\tanh x$, if $x = \log \sqrt{2}$.	2	2	A
iii)	If $u = \frac{1}{r}$ and $r = \sqrt{x^2 + y^2 + z^2}$, find the value of $\frac{\partial^2 u}{\partial x^2}$.	2	3	A
iv)	Find y_n at $x = 0$, if $y = e^{2x}x^2$.	2	4	A
v)	Determine whether following matrix A , is Unitary? $A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix}$	2	5	A
vi)	Determine the interval (a, b) , in which solution to equation $2x - 3 \sin x - 5 = 0$ lies.	2	6	A
vii)	If $u = \sqrt{x} + \sqrt{y}$, find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.	2	3	A
viii)	Reduce the following matrix to echelon form. $ \begin{bmatrix} 1 & 2 & 1 & 3 \\ 3 & 4 & -3 & -1 \\ -1 & 0 & 5 & 7 \end{bmatrix} $	2	5	A
Q.2	Solve any four questions out of six.	16	ig laink	55 1007
i)	Show that the continued product of all the values of $i^{\frac{2}{3}}$ is -1 .	4	1	A
ii)	Prove that $\cosh^{-1}\sqrt{(1+x^2)} = \sinh^{-1}x$.	4	2	A
iii)	If $u = lx + my$, $v = mx - ly$, prove that $\left(\frac{\partial u}{\partial x}\right)_y \times \left(\frac{\partial x}{\partial u}\right)_v = \frac{l^2}{l^2 + m^2}$.	4	3	A
iv)	Find all the stationary points (& not extreme values) of the function $xy(3-x-y)$.	4	4	A

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Supplimentary Exam

Program: B. Tech. Scheme: III Examination: FY Semester: I

Course Code: BSC101 and Course Name: Engineering Mathematics I

Date of Exam: 27	02/2024
------------------	---------

Duration: 2.5 Hours

Max. Marks: 60

v)	Find a, b, c if following matrices are orthogonal. $\begin{bmatrix} a & b & c \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{bmatrix}$	4	5	A
	, Y 11 × 25 %	dais, ii s	suitab e	Samuss
vi)	Solve the following equations by Gauss-Seidel method $10x + y + z = 12$, $2x + 10y + z = 13$, $2x + 2y + 10z = 14$.	4	6	A
Q.3	Solve any two questions out of three.	16	lis yns	syles
i)	Prove using D' Moivres Theorem $\cos^5 x \sin^3 x = -\frac{1}{2^7} (\sin 8x + 2 \sin 6x - 2 \sin 4x - 6 \sin 2s)$	8	1	A
ii)	If $u = x^3 \sin^{-1}\left(\frac{y}{x}\right) + x^4 \tan^{-1}\left(\frac{y}{x}\right)$, find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \text{ at (1,1)}.$	8	3	A
ii)	Find the maximum and minimum distances of the point (3,4,12) from the sphere $x^2 + y^2 + z^2 = 1$.	8	5	A
2.4	Solve any two questions out of three.	17	- 118	2 8
)	If $\tan (\alpha + i\beta) = x + iy$ then prove that a. $x^2 + y^2 + 2x \cot 2\alpha = 1$ b. $x^2 + y^2 - 2x \coth 2\beta = -1$.	8	2	A
)	Investigate for what value of λ , the equations below has a solution and solve them in each case. $x + 2y + z = 3$, $x + y + z = \lambda$, $3x + y + 3z = \lambda^2$	8	4	A
)	Using Newton-Raphson method find the approximate value of the root of the equation $2x^3 - 3x + 4 = 0$ lying between -2 and -1 and correct upto four decimal places.	8	6	A
