K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Program: B.Tech. Scheme: III

Examination: FY Semester: I
Course Code: BSC102 and Course Name: Engineering Physics

Date of Exam:

Duration: 02 Hours

Max. Marks: 45

-			
In	str	1CT1	ons.

(1) All questions are compulsory.

(2) Draw neat diagrams wherever applicable.

(3) A	ssume	suitable	data.	if necess	sarv

	a fing experiences a financiar of a daylaring is 1 s • COA 4 a label of a financiar of a financi	Max. Marks	СО	BT level
Q1	Solve any 5 questions out of six.	15		
i)	Calculate the De Broglie wavelength associated with an electron accelerated by a potential difference of 100 kV.	3	CO1	App
ii)	Draw the Miller planes for (100), (110) and (111).	3	CO1	U
iii)	Find resistivity of intrinsic Germanium. Given the density of carriers is $2.5 \times 10^{19} / \text{m}^3$. The mobility of electrons is $0.39 \text{ m}^2 / \text{V}$ -sec and the mobility of holes is $0.19 \text{ m}^2 / \text{V}$ -sec.		CO3	App
iv)	State the conditions for creating anti reflecting thin film on glass surface.	3	CO4	U
v)	The critical field of Niobium is 10 ⁵ A/m at 8K and 2 x 10 ⁵ A/m at absolute zero temperature. Calculate the critical temperature.	3	CO5	App
vi)	Compare the energy density and power density of a supercapacitor with that of a capacitor and a Battery.	3	CO6	U
Q.2	Solve any three questions out of four.	15	1	
i)	Derive one dimensional Time Dependent Schrodinger equation for matter waves.	5	CO1	U
ii)	An electron is trapped in a one-dimensional infinite potential box of length 2A ⁰ . Calculate the energy required to excite the electron from its ground state to the 4 th excited state.	5	CO1	APP
iii)	State and explain Hall effect with a neat diagram. Derive the expression for Hall voltage and Hall coefficient.	5	CO3	U
iv)	Fermi level for silver is 5.5 eV. What are the energies for which the probability of occupancy at 300 K is 0.99 and 0.01.	5	CO3	APP

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Program: B.Tech. Scheme,: III Examination: FY Semester: I

Course Code: BSC102 and Course Name: Engineering Physics

Date of Exam:

Duration: 02 Hours

Max. Marks: 45

Q.3	Solve any three questions out of four.	15	715 410	
i)	Explain construction and working of Bragg's X-ray spectrometer.	5	CO2	U
ii)	Show that in Newton's ring experiment, diameter of n th dark ring is directly proportional to square root of n.	5	CO4	U
iii)	A wedge-shaped film of refractive index 1.25 is viewed normally in a light of wavelength 5893A°. If the angle of wedge is 1.666 X 10 ⁻⁴ radians, find the distance between two successive bright fringes.	5	CO4	APP
iv)	Enlist the differences between Type I and Type II superconductors.	5	CO5	U
