K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai) Scheme II Program: B.Tech. (Basic Sciences and Humanities) Supplementary Examination: FY Semester: I Course Code: BSC102 and Course Name: Engineering Physics 03-2024 Duration: 02 Hours Date of Exam: 02 - 03 - 2024 Max. Marks: 45 | | Makes to the land of the second secon | Max.
Marks | СО | BT
level | |------|--|---------------|-----|-------------| | Q1 | Solve any 5 questions out of six. | 15 | | | | i) | Explain De Broglie hypothesis on the basis of Bohr's postulate. | 3 | CO1 | U | | ii) | Calculate the wavelength of the wave associated with a neutron moving with energy 0.025eV. Mass of neutron is 1.676 x 10 ⁻²⁷ kg. | 3 | CO1 | APP | | iii) | Draw the following planes in a cubic unit cell $-(101)$, $(1\overline{2}2)$, (220) | 3 | CO2 | U | | iv) | Show the position of Fermi level in intrinsic semiconductor, n-type semiconductor and p-type semiconductor energy band diagram. | 3 | CO3 | U | | v) | What is the nature of interference pattern in case of wedge shaped film experiment? | 3 | CO4 | U | | vi) | Define superconductivity. What do you mean by critical temperature? | 3 | CO5 | U | | Q.2 | Solve any three questions out of four. | 15 | | | | i) | Using Heisenberg's Uncertainty Principle, show that electron cannot exist within the nucleus. | 5 | CO1 | U | | ii) | An electron is bound in a one dimensional potential well of width 2 A ⁰ and of infinite height. Find its energy values in ground state and first two excited states. | 5 | CO1 | APP | | iii) | Show that for an intrinsic semiconductor, $E_F = \frac{E_C + E_V}{2}$ where symbols have their usual meaning. | 5 | CO3 | U | K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai) Scheme II Program R Tach (Resignation and Humanities) Program: B.Tech. (Basic Sciences and Humanities) Supplementary Examination: FY Semester: I Course Code: BSC102 and Course Name: Engineering Physics Date of Exam: Duration: 02 Hours Max. Marks: 45 | iv) | Explain Hall effect with a neat diagram.
n-type Ge sample has donor concentration 10^{21} /m ³ and thickness = 3 mm is used in a Hall effect experiment set up. If B = 0.5 T, J = 500 A/m ³ , Find Hall voltage. | 5 | CO3 | APP | |------|---|----|--------|-----| | Q.3 | Solve any three questions out of four. | 15 | b said | | | i) | Obtain Bragg's law of X-ray diffraction. Calculate the smallest glancing angle at which k-copper line of 1.549 A ⁰ will be reflected from crystal having atomic spacing 4.255 A ⁰ . | 5 | CO2 | APP | | ii) | Obtain the expression for effective path difference between two reflected rays in thin transparent film of uniform thickness. | 5 | CO4 | U | | iii) | White light falls normally on a soap film of refractive index 1.33 and thickness 5000 A^0 . What wavelength within the visible spectrum ($\lambda = 4000 \ A^0$ to 7000 A^0) will be strongly reflected? | 5 | CO4 | APP | | iv) | State and explain Meissner's effect with the help of a diagram. | 5 | CO5 | U | *******