K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai) Scheme II

Program: B.Tech. (Basic Sciences and Humanities) Supplementary Examination: FY Semester: I

Course Code: BSC102 and Course Name: Engineering Physics 03-2024 Duration: 02 Hours

Date of Exam: 02 - 03 - 2024

Max. Marks: 45

	Makes to the land of the second secon	Max. Marks	СО	BT level
Q1	Solve any 5 questions out of six.	15		
i)	Explain De Broglie hypothesis on the basis of Bohr's postulate.	3	CO1	U
ii)	Calculate the wavelength of the wave associated with a neutron moving with energy 0.025eV. Mass of neutron is 1.676 x 10 ⁻²⁷ kg.	3	CO1	APP
iii)	Draw the following planes in a cubic unit cell $-(101)$, $(1\overline{2}2)$, (220)	3	CO2	U
iv)	Show the position of Fermi level in intrinsic semiconductor, n-type semiconductor and p-type semiconductor energy band diagram.	3	CO3	U
v)	What is the nature of interference pattern in case of wedge shaped film experiment?	3	CO4	U
vi)	Define superconductivity. What do you mean by critical temperature?	3	CO5	U
Q.2	Solve any three questions out of four.	15		
i)	Using Heisenberg's Uncertainty Principle, show that electron cannot exist within the nucleus.	5	CO1	U
ii)	An electron is bound in a one dimensional potential well of width 2 A ⁰ and of infinite height. Find its energy values in ground state and first two excited states.	5	CO1	APP
iii)	Show that for an intrinsic semiconductor, $E_F = \frac{E_C + E_V}{2}$ where symbols have their usual meaning.	5	CO3	U

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Scheme II

Program R Tach (Resignation and Humanities)

Program: B.Tech. (Basic Sciences and Humanities)
Supplementary Examination: FY Semester: I

Course Code: BSC102 and Course Name: Engineering Physics

Date of Exam:

Duration: 02 Hours

Max. Marks: 45

iv)	Explain Hall effect with a neat diagram. n-type Ge sample has donor concentration 10^{21} /m ³ and thickness = 3 mm is used in a Hall effect experiment set up. If B = 0.5 T, J = 500 A/m ³ , Find Hall voltage.	5	CO3	APP
Q.3	Solve any three questions out of four.	15	b said	
i)	Obtain Bragg's law of X-ray diffraction. Calculate the smallest glancing angle at which k-copper line of 1.549 A ⁰ will be reflected from crystal having atomic spacing 4.255 A ⁰ .	5	CO2	APP
ii)	Obtain the expression for effective path difference between two reflected rays in thin transparent film of uniform thickness.	5	CO4	U
iii)	White light falls normally on a soap film of refractive index 1.33 and thickness 5000 A^0 . What wavelength within the visible spectrum ($\lambda = 4000 \ A^0$ to 7000 A^0) will be strongly reflected?	5	CO4	APP
iv)	State and explain Meissner's effect with the help of a diagram.	5	CO5	U
