Regular

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

May 2024

Program: B.Tech. Scheme: III Examination: FY Semester: II

Course Code: BSC201 and Course Name: Engineering Mathematics II

Date of Exam: 15/05/2024

Duration: 2.5 Hours

Max. Marks: 60

(1) Al	l questions are compulsory. ssume suitable data, if necessary.	sh as I		
(2) As	Sume summer duta, it recessary.	Max. Marks	СО	BT level
Q 1	Solve any six questions out of eight:	12		,
i)	Check the exactness of the following differential equation $\left[y\left(1+\frac{1}{x}\right)+\cos y\right]dx+(x+\log x-x\sin y)dy=0.$	2	CO1	A
ii)	If the following differential equation is non-exact find its corresponding integrating factor $\frac{dy}{dx} + \left(\frac{1-2x}{x^2}\right)y = 1$	2	CO1	A
iii)	Solve $\{(D-1)^4(D^2+2D+2)^2\}y=0$	2	CO2	A
iv)	Find Particular integral of $(6D^2 + 17D + 12)y = 2^x$.	2	CO2	А
v)	Evaluate $\int_0^\infty \frac{x^5(1+x^4)}{(1+x)^{16}} dx$	2	CO3	A
vi)	Evaluate $\int_0^{\pi/4} \int_0^{\sqrt{\cos 2\theta}} \frac{r dr d\theta}{(1+r^2)^2}$	2	CO4	A
vii)	Evaluate $\int_0^1 \int_0^2 \int_1^2 x^2 yz dx dy dz$	2	CO5	A
viii)	Using Trapezoidal Rule compute $\int_{20}^{26} f(x) dx$.	-2	CO6	A
	x 20 21 22 23 24 25 26 f(x) 95.90 96.85 97.77 98.68 99.56 100.41 101.24		The Say	\$
Q.2	Solve any four questions out of six.	16	*	
i)	Solve $(y - xy^2)dx - (x + x^2y)dy = 0$	4	COI	A
ii)	Solve $(D^2 + 4)y = x\sin^2 x$	4	CO2	A
iii)	Find the length of cardioid $r = a(1 - \cos\theta)$ lying inside the	4	CO3	A

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

May 2024

Program: B.Tech. Scheme: III
Examination: FY Semester: II

Examination: FY Semester: II
Course Code: BSC201 and Course Name: Engineering Mathematics II

Date of Exam:

Duration: 2.5 Hours

Max. Marks: 60

	circle $r = a\cos\theta$.		18110	iloni
iv)	Evaluate $\iint xy dx dy$ over the area bounded by $y = x^2$ and $x = -y^2$.	4	CO4	A
v)	Find the area of smallest region bounded by $x^2 + y^2 = a^2$ and $x + y = a$, $(a > 0)$.	4	CO5	A
vi)	Find the approximate value of $\int_0^6 e^x dx$ by dividing the interval into 7 ordinates using Simpson's (3/8) rule.	4	CO6	A
Q.3	Solve any two questions out of three.	16	ioi sait	
i)	Solve $(x^3y^3 + xy)dy = dx$	8	COI	A
ii)	Use the method of variation of parameter to solve the equation $(D^2 - 1)y = \frac{2}{1 + e^x}$	ni natus.	CO2	A
iii)	Assuming the validity of differentiation under integral sign show that $\int_0^\pi \frac{\log(1+\alpha cosx)}{\cos x} \ dx = \pi \sin^{-1}\alpha \ , 0 \le \alpha \le 1$	8	CO3	A
Q.4	Solve any two questions out of three.	16	Montex	
i)	Change the order of integration and evaluate $\int_0^a \int_{x^2/a}^{2a-x} xy dy dx$	8	CO4	A
ii)	Evaluate $\iiint_{v} (x^2 + y^2) dv$ where v is the solid bounded by the surface $x^2 + y^2 = z^2$ and the planes $z = 0, z = 2$.	8	CO5	A
iii)	Use Runga-Kutta method of second order to find y satisfying the equation $\frac{dy}{dx} = \log(x + y)$, y (1) =2, at x= 1.4 correct up to four decimal places by taking h=0.2.	, 8	CO6	A