IT Extra

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

May-June 2024

(B.Tech) Program: Information Technology Scheme I/II/IIB/III: IIB

Regular Examination: SY Semester: IV

Course Code: ITC404 and Course Name: Automata Theory

Date of Exam: 21-05-2024 Duration: 2.5 Hours Max. Marks: 60

Instructions:

(1) All questions are compulsory.

(2) Draw neat diagrams wherever applicable.

		Max. Marks	СО	BTL
Qu-1	Solve any SIX questions out of EIGHT.	12		
i)	What is a language? Define concatenation of languages L ₁ and L ₂ .	2	CO1	2
ii)	Give the formal definition of Deterministic Finite Automaton (DFA).	2	CO2	2
iii)	What are derivation trees?	2	CO3	2
iv)	What are the kinds of moves that can be made while accepting strings with an NPDA?	2	CO4	2
v)	Why is halting problem useful?	2	CO5	2
vi)	List the Phases of Compiler.	2	CO6	1
vii)	Give an example of a grammar with useless production.	2	CO3	2
viii)	List the application of Turing machine and explain any one in detail.	2	CO5	2
Qu-2	Solve any FOUR questions out of SIX.	16		
i)	What is the motivation behind writing regular expressions? What do the following regular expressions represent? (1) $(a + b) \cdot (b + c)$ (2) $(0 + 1)^*$	4	CO1	3
ii)	Draw NFA for the Regular Expression (ab ∪ a)*.	4	CO2	4
iii)	Give CFG for set of odd length strings in {0, 1}* with middle symbol '1'.	4	CO3	5
iv)	Design a PDA to accept strings of type a ⁿ b ⁿ .	4	CO4	5
v)	Design a Turing Machine to accept strings of type a ⁿ b ²ⁿ .	4	CO5	5
vi)	List and explain the differences between compiler and interpreter.	4	CO6	2
Qu-3	Solve any TWO questions out of THREE.	16		
i)	What is Regular Grammar? Write a grammar (RL and LL) that generate the language: $L = \{w \in \{a, b\}^* length(w) \text{ is EVEN}\}$	8	CO1	5

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

May-June 2024

(B.Tech) Program: Information Technology Scheme I/II/IIB/III: IIB

Regular Examination: SY Semester: IV

Course Code: ITC404 and Course Name: Automata Theory

Date of Exam: 21-05-2024

Duration: 2.5 Hours

Max. Marks: 60

ii)	Convert the NFA to DFA. The transition table for the NFA is:					CO2	3
	$Q \Sigma$	a b					
	$\rightarrow q_0$	q ₀	q ₀ , q ₁				
	q_1		q ₂			60	
	q_2						
		93(X ₁₀)	attions and a	Except,			
iii)	For the grammar given below: $S \rightarrow A1B, A \rightarrow 0A \mid \varepsilon, B \rightarrow 0B \mid 1B \mid \varepsilon$				8	CO3	3
	Give parse tree for leftmost and rightmost derivation of the string '1001' and '00101'.					602	
Qu-4	Solve any TWO questions out of THREE.			16	CO		
i)	Let the language $SimplePal = \{xcx^r \mid x \in \{a, b\}^*\}$ and the transition table in Table-1 is modified in that the letters on the stack are uppercase and the PDA accepts by empty stack. Give a CFG from a PDA accepting the language $SimplePal = \{xcx^r \mid x \in \{a, b\}^*\}$.				8	CO4	5
ii)	Design a Turing machine which recognizes the language $L=\{WCW^R \mid W \in \{0,1\}^* \mid W^R - \text{reverse of } W\}$			8	CO5	5	
iii)	Design a PDA that will recognizes the language $L= \{WCW^R \mid W \in \{a, b\}^* \mid W^R - \text{reverse of } W\}$				8	CO4	5

Table-1: A PDA Accepting SimplePal by Empty Stack

Move Number	State	Input	Stack Symbol	Move(s)
) (6+1) 0	90	а	Z_0	(q_0, AZ_0)
2	90	b	Z_0	(q_0, BZ_0)
3	90	a	A	(q_0, AA)
4	90	b	A	(q_0, BA)
5	q_0	а	B	(q_0, AB)
6	90	b	B	(q_0, BB)
7	90	C	Z_0	(q_1, Z_0)
8	90	C	A	(q_1, A)
9	90	С	В	(q_1, B)
10	91	a	A	(q_1, Λ)
11	91	b	B	$=(q_1,\Lambda)$
12	91	Λ	Z_0	(q_1, Λ)
		none		
