K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

May-June 2024
Program: B.Tech Scheme :II/IIB
Regular Examination: SY Semester: IV

Course Code: EXC401 and Course Name: Applications of Mathematics in Engineering-II

Date of Exam: 14-MAY-2024 Duration: 2.5 Hours

Max. Marks: 60

(1)A (2)D (3)A	suctions: Il questions are compulsory. Fraw neat diagrams wherever applicable. It is sume suitable data, if necessary. Write final answer in decimals not in fraction wherever applicable.	edirel	etifO etifo Z	
	A Part of State of the state of	Max Mar ks	СО	BT level
Q 1	Solve any six questions out of eight:	12		
i)	Evaluate $\int \bar{z} dz$ where C is the upper half of the circle $r=1$	2	1	3
ii)	State Bayes theorem.	2	3	3
iii)	Given $6Y = 5X + 90$, $15X = 8Y + 130$, $\sigma_x^2 = 16$. Find \overline{X} and \overline{Y}	2	2	3
iv)	Verify Cauchy-Schwartz inequality for vectors $u = (-4,2,1)$, $v = (8,-4,-2)$.	2	4	3
v)	Write down the matrix of each of the following quadratic form (i) $x^2 - 2y^2 + 3z^2 - 2xy - 6xz + 10zy$ (ii) $2x_1^2 - 3x_2^2 + 4x_3^2 + x_4^2 - 2x_1x_2 + 3x_1x_3 - 4x_1x_4 - 5x_2x_3 + 6x_2x_4 + x_3x_4$	2	5	3
vi)	Find extremals of the functional $\int_{x_1}^{x_2} \frac{{y'}^2}{x^3} dx = 0$.	2	6	3
vii)	Find the unit vector in \mathbb{R}^3 orthogonal to both $(1,0,1)$ and $(0,1,1)$.	2	4	3
viii)	Evaluate $\int_0^{1+i} (x^2 + iy) dz$ along the path $y = x$.	.2	1	3
Q.2	Solve any four questions out of six.	16	192	-
i)	Expand $f(z) = \cos z$ as a Taylor's series around $z = \frac{\pi}{2}$.	4	1	3
ii)	Check whether true or false and justify your answer. If X is a Poisson variate such that $P(X = 2) = 9P(X = 4) + 90P(X)$, then the mean of X is 1.	4	3	3

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

May-June 2024 Program: B.Tech Scheme: II/IIB Regular Examination: SY Semester: IV

Course Code: EXC401 and Course Name: Applications of Mathematics in Engineering-II Max. Marks: 60 Duration: 2.5 Hours

Date of Exam: 14-MAY-2024

ii)	Obtain the equation of the line of regression of Y on X from the following data and estimate Y for X=73 X 70 72 74 76 78 80 Y 163 170 179 188 196 220									4	2	3		
iv)					g throu	gh orig	in is a s	subspac	e of R ³	3.		4	4	3
v)	Show that any plane passing through origin is a subspace of R^3 . Reduce the following Quadratic form $6x_1^2 + 3x_2^2 + 14x_3^2 + 4x_1x_2 + 18x_1x_3 + 4x_2x_3$ to diagonal form through congruent transformations.										4	5	3	
vi)	Find extremals of the functional $\int_0^{\frac{3\pi}{2}} (y^2 - {y'}_{\frac{1}{2}}^2) dx$, given $y(0) = 0$ and $y(\frac{3\pi}{2}) = 1$.										4	6	3	
Q.3	Solve	Solve any two questions out of three.										16		100
i)	Evaluate $\int_C \frac{z+6}{z^2-4} dz$ where C is the circle (i) $ z = 1$ (ii) $ z-2 = 1$ (iii) $ z+2 = 1$.										8	1	3	
ii)	In a competitive examination the top 15% of the students appeared will get grade A, while the bottom 20% will be declared fail. If the grades are normally distributed with mean % of marks 75 and SD 10, determine the lowest % of marks to receive grade A and the lowest % of marks that passes.										8	3	3	
iii)	From betwee X	the follen X ar	owing nd Y 55 30	data ca	60 20	the coe 43 30	37 50	43 72	49 60	10 45	20 25	8	2	3
Q.4	.4 Solve any two questions out of three.									16	-			
i)	Let R ³ have the Euclidean inner product. Use Gram-Schmidt process to transform the basis of subspace $\{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}\}$ into orthonormal basis, where $\mathbf{u_1} = (1,1,1), \mathbf{u_2} = (-1,1,0), \mathbf{u_3} = (1,2,1)$									*8	4	3		
ii)	-	Find the Singular value decomposition of $\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$.										8	5	3
	Find the extremal of $\int_{x_0}^{x_1} (y''^2 - y^2 + x^2) dx$.													