K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

April - May 2024

(B.Tech) Program: Computer Engineering Scheme :II

Examination: LY Semester: VIII

Course Code: CEDLC8021 and Course Name: Applied Data Science

Date of Exam: 16/5/2024

Instructions:

Duration: 2.5 Hours

Max. Marks: 60

	f alon		radks radks	unacos Wad c Wate	no Ognivia Sobae	ediner admin	auzeo dalara led 0 s			eren was n Jetypic out: 4 stripes ont	Max. Marks	CO	BT
Q1	Solve any six questions out of eight:						12						
i)	Find the arithmetic mean of the following frequency distribution								ST THE PARTY OF	2	CO1	Ap	
	f:	1	2		3	4	5	17	5	7	monera		Ap
	Ι:	5	9		12	17	14	1	10	6			
ii)	Calcula 1 B=-1 -2	B=-1 3 -2						2	CO2	Ap			
iii)	Differentiate between estimate of location v/s estimate of variability						2	CO3	U				
iv)	List the types of sampling methods.						2	CO4	U				
v)	List the types of sampling methods. Signify the importance of p-value in hypothesis testing.					2	CO5	U					
vi)	State the need of confusion matrix in data science.						2	CO6	U				
/ii)	Define	the cent	ral lim	it theo	rem.	15 2523	w to n	es. Ominid	nesy was the disp	to continue	2 .	CO4.	U.
viii)	Compa	e and co	ontrast	betwe	en AUC	& Lift.		lingei	Bode H	-26.5 FL 80734	2	CO6	U
Q.2	Solve any four questions out of six.					16	10.77	- 1					
	Eight coins were tossed together and the no of heads resulting was noted. The operation was repeated 256 times and the frequencies (f) that were obtained for different values of x, the number of heads are shown in the following table. Calculate median, quartile, 4 th decile & 27 th percentile							4	COI	Ар			
11	x:	0	1	2	3	4	5	6	7	8	SPECIAL SECTION	10	

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	App great 7		
iii)	What are elements of structural data?	4	CO3	U
iv)	has a Weibull distribution of α =300 hours & β =0.5. Calculate the probability that a)Disk lasts at least 600 hours	ive gases 4 robability	CO4	Ap
	b)disk failure before 500 hours	suenti jai percut	iek smile	A(c)
V)	A genetics engineer was attempting to cross a tiger and a cheer predicted a phenotypic outcome of the traits she was observing to	be in the	CO5	Ap
	following ratio 4 stripes only: 3 spots only: 9 both stripes and spot the cross was performed and she counted the individuals she found stripes only, 41 with spots only and 85 with both. According to square test, did she get the predicted outcome?	1 50 with	Solve	
7.71		described colling	ed bar-	111
Vi)	Write in short about local and global optima	4	CO6	U
Q.3		16		
i)	An analysis of monthly wages paid to the workers of two firms A & belonging to the same industry gives the following results Firm A Firm B	B 8	C01	Ap
	Variance of 81 100 distribution	grpes of sengion	1.4st the	
	 Which firm A or B has a larger wage bill? In which firm A or B is there greater variability in individual wages. calculate the following The average monthly wages 	es.	CHOSES State Co	(, , *
	ii) The variance of the distribution of wages of all the wo	orkers in		(atv.
ii)	Solve the following using binomial distribution a) An irregular six faced die is thrown and the expectation the throws it will give five even numbers is twice the expectatio will give four even numbers. How many times in 10,000 se throws each, would you expect it to give no even number. (4) b) In a precision bombing attack there is a 50% chance that anyone bomb will strike the target. Two direct hits are required to determine the target completely. How many bombs must be dropped to 99% chance or better of completely, destroying the target? (4)	n that it ts of 10 M) one stroy give a	CO4	Ap

iii)	a) Differentiate b) Three differences. The object the rats per week the following da	8	CO5	Ap		
	Food I					
	8	4	11			
	12 5 8					
	19					
	8	6	13			
	6	9	7			
	11	7	9			
Q.4	Solve any two a	uestions out of three.		16		
Q. +	Solve ally two qu	destions out of three.	at of three.			
i)	Calculate the raimportance of	8	CO2	Ap		
ii)	Write a short not a)Exploring the d b)Exploring the b	8	CO3	U		
iii)	Write a short note	8	CO6	U		
	a) Constrained or					
	b) Unconstrained	optimization				