K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

May-June 2023-24

(B.Tech.) Program: Electronics and Telecommunication Engineering Scheme: IIB

Regular Examination: TY Semester: VI

Course Code: EXC601 and Course Name: Electromagnetics and Antenna

Date of Exam: 22 May 2024 Duration: 2.5 Hours Max. Marks: 60

(2) Draw neat diagrams wherever applicable.(3) Assume suitable data, if necessary.						
	# In the toppe our protection attenuate dispensed on to years still broke in each	Max. Marks	СО	BT level		
Q 1	Solve any six questions out of eight:	12				
i)	Explain the Coulombs Law and Biot Savart Law.	2	1	U		
ii)	Explain boundary conditions of E and H fields for two media.	2	2	U		
iii)	Explain transmission line with its equivalent circuit.	2	3	U		
iv)	Explain isotropic antenna, omnidirectional and directional antenna.	2	4	U		
v)	Justify why Circular polarization is superior for satellite application?	2	4	U		
vi)	Explain single wire radiation mechanism.	2	5	U		
vii)	Why micro strip antennas are also called as patch antennas?	2	6	U		
viii)	Describe parabolic reflector antenna and its anyone feeding method.	2	6	U		
Q.2	Solve any four questions out of six.	16	4			
i)	Find E, at P (1,1,1) caused by four identical 3 nC charges located at P1(1,1,0), P2 (-1,1,0), P3(-1,-1,0) and P4(1,-1,0).	4	1	Ap		
ii)	Define Depth of penetration, and calculate it for a wave travelling in a conductor ($\sigma = 3.5 \times 107 \text{ S/m}$), with a frequency of 50 MHz $\epsilon r = 1.2$, $\mu r = 1$.	4	2	Ap		

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

May-June 2023-24

(B.Tech.) Program: Electronics and Telecommunication Engineering Scheme: IIB

Regular Examination: TY Semester: VI

Course Code: EXC601 and Course Name: Electromagnetics and Antenna

Date of Exam: 22 May 2024 Duration: 2.5 Hours Max. Marks: 60

iii)	Derive the transmission line impedance equation.	4	3	U
iv)	Explain helical antenna in normal and axial mode.	4	4	U
v)	For a uniform broadside array of 10 isotropic elements, determine the approximate directivity in dB when the spacing between the elements is $\lambda/4$, $\lambda/2$, $3\lambda/4$ and λ .	4	5	Ap
vi)	Compare Rectangular and circular Microstrip antenna.	4	6	U
Q.3	Solve any two questions out of three.	16	(1)	
i)	Three equal point charges of $4\mu C$ are located at $(0, 0, 0)$ m, $(2, 0, 0)$ m and $(0, 2, 0)$ m respectively in free space. Find out net force on Q4= 5 μC at $(2,2,0)$ m.	8	1	Ap
ii)	The normalized radiation intensity of an antenna is given by, $U=Sin\Theta*Sin\Phi \qquad 0\leq\Theta\leq\pi,0\leq\Phi\leq\pi$ $U=0 \qquad \qquad \text{elsewhere}$ Find: (1) exact directivity (11) Azimuth and elevation plane HPBW in degrees.	8	5	An
iii)	What is line of sight propagation? Obtain expression for range of line of sight for space wave propagation in terms of antenna's transmitting and receiving heights.	8	4	An
Q.4	Solve any two questions out of three.	16		
i)	Derive Maxwell's equations in integral & Point form for time varying fields.	8	2	An
ii)	Draw the following on the smith chart. (a). $150+j75\ \Omega$, (b). $20+j10\ \Omega$ (c). $0-j60\ \Omega$ (d). Reflection coefficient = $I=0.2 L=60^{\circ}$. (e). constant VSWR circle for $\rho=2.7$ (f). minimum resistance point on the constant VSWR circle for $\rho=1.5$, if $Z0=50\ \Omega$.	8	4	Ар
iii)	Design CMSA at 5.8 GHz resonant frequency using FR4 with εr=4.4 and h=1.6 mm.	8	6	Ap