AI-DS EXTRA

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

April - May 2024

B.Tech Program: Artificial Intelligence and Data Science Scheme:II

Examination: TY Semester: VI

Course Code: AIC601and Course Name: Artificial Neural Network

Date of Exam: 15/05/24

Duration: 2.5 Hours

Max. Marks: 60

	atreassociative memory network using outer product nile (M	Max. Marks	СО	BT level
Q 1	Solve any six questions out of eight:	12	=1 0	
i)	Differentiate between Single-Layer Feed Forward and Multi-Layer Feed Forward neural networks	02	1	U
ii)	Give any eight applications of ANN.	02	1	U
iii)	List different learning rules of ANN	02	2	U
iv)	How to choose right activation functions	02	92	i U
v)	Explain any two applications in details of Adaline networks	02	3	g U
vi)	Explain the stages of the SOM algorithm	02	4	U
vii)	Explain advantages and disadvantages of associative memory	02	5	U
viii)	Find the hamming distance and average hamming distance for the two given input vectors below, X1=[1 1-1-1-1 1-1-1-1-1] X2=[-1 1 1-1 1-1 1-1 1-1-1]	02 tsili wo	5	Ap
Q.2	Solve any four questions out of six.	16		6
i)	Explain biological neuron in details and explain similarities between biological and artificial neuron	04	1	U
ii)	Explain RELU and Leaky RELU activation functions	04	2	U
iii)	Explain Madeline network architecture with diagram	04	3	U
iv)	Consider KSO net with two clusters and five input units. The weight vector for the cluster units are given by w_1 =[1.0 0.9 0.7 0.5]	04	4	AP

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

April - May 2024

B.Tech Program: Artificial Intelligence and Data Science Scheme:II
Examination: TY Semester: VI

Course Code: AIC601 and Course Name: Artificial Neural Network

Date of Exam: 15/05/24

Duration: 2.5 Hours

Max. Marks: 60

	0.3], w_2 =[0.3 0.5 0.7 0.9 0.1]. Use the square of the Euclidean distance to find the winning cluster unit for the input pattern x=[0.0 0.5 1.0 0.5 0.0]. Using a learning rate of 0.25, find the new weights for the winning unit.		Daw) Aft en) Daw) Asset	
v)	Train the hetroassociative memory network using outer product rule to store input row vector $s=(s_1, s_2, s_3, s_4)$ to the output row vector $t=(t_1,t_2)$, use vector pair as given in the following table	04	5	Ap
	Input targets s1 s2 s3 s4 t3 t2			(ii
vi)	Draw and explain structure of face recognition system using ANN	04	6	U
Q.3	Solve any two questions out of three.	16		
)	Explain following terminology related to neural network in details with examples 1. Weight 2. Bias 3. Threshold 4. Learning Rate	08	1	U
i)	Show that the derivative of unipolar sigmoidal function is f '(x)=lambda $f(x)[1-f(x)]$ and derivative of bipolar sigmoidal function is $f'(x)=(lambda/2)[1+f(x)][1-f(x)]$	08	2	Ap
iii)	Using Madaline Network implement XOR function with bipolar inputs and targets upto 2 nd input.	08	3	Ap

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

April – May 2024

B.Tech Program: Artificial Intelligence and Data Science Scheme:II
Examination: TY Semester: VI

Course Code: AIC601 and Course Name: Artificial Neural Network

Date of Exam: 15 05 124

Duration: 2.5 Hours

Max. Marks: 60

	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array}\end{array}\end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			
Q.4	Solve any two questions out of three.	16		
i)	For the given KSOFM with weights as shown use square of Euclidean distance to find the cluster unit Yj, close to the input vector (0.2, 0.4). Using a learning rate of 0.2 find the new weights for unit Yj. For the input vector (0.6, 0.6) with learning rate 0.1 find the winning cluster unit and its new weights.	08	4	Ap
	(x_1) (0.5) (0.5) (0.5) (0.7) (0.8) (0.9) (0.4) (0.2) (0.7) (0.8) (0.9) (0.4) (0.2) (0.1) (0.7) (0.8) (0.9) (0.1) (0.7) (0.8) (0.9) (0.1) (0.7) (0.8) (0.9) (0.1) (0.7) (0.8) (0.9) (0.1) (0.7) (0.8) (0.9) (0.1) (0.7) (0.8) (0.9) (0.1) (0.7) (0.8) (0.9) (0.1) (0.7) (0.8) (0.9) (0.1) (0.7) (0.8) (0.9) (0.1) (0.7) (0.8) (0.9) (0.1) (0.7) (0.8) (0.9) (0.1) (0.7) (0.8) (0.9) (0.1) (0.7) (0.8) (0.9) (0.1) (0.7) (0.8) (0.9) (0.1) (0.7) (0.8) (0.9) (0.1) (0.7) (0.8) (0.9) (0.1) (0.7) (0.8) (0.9) (0.1) (0.7) (0.8) (0.1) (0.7) (0.8) (0.7) (0.7) (0.8) (0.7) (0.7) (0.7) (0.7) (0.8) (0.7) $(0.7$			
ii)	Train the auto-associative network for the input vector [-1 1 1 1] and also test the network for the same input vector. Test the auto-associative network with one missing, one mistake, two missing and two mistake entries in test vector.	08	5	Ap
iii)	Explain step by step Diabetes prediction process using ANN in details	08	6	U