

Trim: June -	- Nov 24	
Maximum Marks: 25 Examination: ETE Exam Date: 29/11/24 Duration	1:1.5 hours	
Programme code: 09 Programme: MCA	Class: SY	Semester/Trimester: III
College: K. J. Somaiya Institute of Management	Name of the department/Se	ction/Center:
Course Code: 217P09C303	Name of the Course: Rese	arch Methodology
Instructions: Question number 1 is compulsory Solve any three out of question number 2 - 5		

uestion No.												Max. Marks
	A study of the effect of caff were randomly selected to each exercise the subject's indicator of whether energy caffeine changes RER. The spss output showed the follow	respiratory is being ob	ule containin exchange ra	g pure caff itio (RER) carbohydra	was measuretes or fats).	our before the ared. (RER is	the ratio of of interest to	her men rece CO2 produce the experim	ived a place eed to O2 c enter was w	cbo capsule. onsumed an	During and is an average,	10
	T-Test		Grou	p Statis	tice							
			Orou	h Statis	ucs							
	GROUF	.	N	 Mea	_{an}	Std. Deviation		. Error ean				
				100.5556		7.699						
	Caffein	e l	9	94.2	222	5.607	75 1	1.8692				
			Test for Variances		·	ples Test	r Equality o					
		quality of	Test for Variances	Independ	dent Sam	t-test fo	r Equality o	f Means Std. Error	Differ	l of the rence		
	RER Equal varianc		Test for	Independ t	·	t-test fo	r Equality o	f Means Std. Error	Interva Differ Lower	lofthe		
	RER Equal varianc assumed Equal varianc not assumed	guality of F .197	Test for Variances Sig.	Independ	dent Sam	t-test for Sig. (2-tailed)	r Equality o Mean Difference	f Means Std. Error Difference	Interva Differ Lower 3972	l of the rence Upper		
	assumed Equal varianc	guality of F .197	STest for Variances Sig. .663	t 1.995	dent Sam	t-test for Sig. (2-tailed)	r Equality o Mean Difference 6.3333	f Means Std. Error Difference 3.1749	Interva Differ Lower 3972	of the rence Upper		
	assumed Equal varianc not assumed Based on above information 1. Frame the nece	F	Sig. Sig663	t 1.995 1.995 uestions:	df 16 14.624	t-test fo Sig. (2-tailed) .063	r Equality o Mean Difference 6.3333	f Means Std. Error Difference 3.1749	Interva Differ Lower 3972	of the rence Upper		
	Based on above information 1. Frame the nece 2. What are the co	F	Sig. Sig663	t 1.995 1.995 uestions:	df 16 14.624	t-test fo Sig. (2-tailed) .063	r Equality o Mean Difference 6.3333	f Means Std. Error Difference 3.1749	Interva Differ Lower 3972	of the rence Upper		
	assumed Equal varianc not assumed Based on above information 1. Frame the nece	F	Sig. Sig. Sig. Sig. Sig. Sig.	t 1.995 1.995 uestions: ad alternate endent t tes st result?	df 16 14.624	t-test fo Sig. (2-tailed) .063 .065	r Equality o Mean Difference 6.3333	f Means Std. Error Difference 3.1749	Interva Differ Lower 3972	of the rence Upper		

also been put in place to support the industry and achieve sustained growth. However, an important question is whether, ultimately, there is enough land devoted to grape cultivation, since the quantity of grapes crushed predominately determines how much wine is produced. Therefore, it might be useful to investigate the relationship between domestic sales of wine and the area of land devoted to wine production. The following excel output displays the results of a regression predicting domestic sales of New Zealand wine (in millions of liters) by producing area (in hectares). Suppose you were asked by the Wine Institute of New Zealand to analyze this data and write a brief report. On the basis of the results below, what would you find?

SUMMARY OUTPU	J T					
Regression Statistics						
Multiple R	0.658102884					
R Square	0.433099406					
Adjusted	0.370110451					
R Square						
Standard Error	4.801382127					
Observations	11					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	158.5096579	158.5097	6.875799	0.027712	
Residual	9	207.479433	23.05327			
Total	10	365.9890909				
	Coefficients	Standard	t. stat	P-value	Lower 95%	Upper 95%
		Error				
Intercept	30.85590683	3.849536982	8.015485	2.18E-05	22.14765	39.56416
Producing Area	0.000633111	0.000241445	2.622175	0.027712	8.69E-05	0.001179

- a) Frame the necessary hypothesis?
- b) Comment on strength of model & Standard Error of the Estimate
- c) Frame the Equation of regression.
- d) Comment on Individual Significance of Independent Variables by flaming required hypothesis.

Write a note on Data Editing and Coding

3

5

4	Differentiate between Categorical and Numerical Variables with examples	5
5	What is a positive and negative correlation? Explain their significance	5