

			Semester: Ju	ne – Sep 24	
Maximum	Marks: 50	Examination: ETE Exam	Date: 6/11/2024 Duratie	on: 2 Hours	1
Programm Programm				Class: FY	Semester/Trimester: I
College: K	. J. Somaiya	Institute of Management		Name of the department/S	ection/Center: Business Analytics
Course Co	de: 317P01C1	103		Name of the Course: Decis	ion Science
Instruction 1. 2. 3.	All question Make suitab	ble assumptions if required an		-	dable manner to enable a fast evaluation of your
answers. 4. 5. 6.	Make only 1		so. Asheets pertaining to each quest have your roll number and na		
7.	Please follow	w the instructions of the facult	y/IT staff on duty.		

Question No.					Max. Marks
1A	The following table reports the per	centage of stocks in a typical portfo	olio in nine quarters from 2005 to 20	007.	10
	Quarter	Stock (%)	Quarter	Stock (%)	
	1 st 2005	29.8	2 nd 2006	31.5	
	2 nd 2005	31.0	3 rd 2006	32.0	
	3 rd 2005	29.9	4 th 2006	31.9	
	4 th 2005	30.1	1 st 2007	30.0	
	1 st 2006	32.2			
	a) Use exponential smoothing t smoothing constant provides the be		der smoothing constants of $\alpha = 0.2$	3, 0.5, and 0.7. What value of the	
	b) What is the forecast of the per part (a) above?	ccentage of assets committed to stor	cks for the second quarter of 2007 t	using the best forecast identified in	

A manufacturing firm produces diesel engines in four cities Phoenix, Seattle, St. Louis, and Detroit. The company is able to produce the 5

following number	ers of engines per month:
Plant	Production
Phoenix	5
Seattle	25
St. Louis	20
Detroit	25
Three trucking fi	rms purchase the following numbers of engines for their plants in three cities:
Firm	Demand
Greensbo	ro 10

1B

2

The transportation costs per engine (in hundreds of dollars) from sources to destinations are shown in the following table. However, the Charlotte firm will not accept engines made in Seattle, and the Louisville firm will not accept engines from Detroit; therefore, those routes are prohibited:

			Firm					
		Greensboro	Charlotte	Louisville				
	Phoenix	7	8	5				
Plant	Seattle	6	-	6				
	St. Louis	10	4	5				
	Detroit	3	9	-				

Solve the problem to determine the minimum shipping cost.

Charlotte

Louisville

20

15

OR

The Bunker Manufacturing firm has five employees and six machines and wants to assign the employees to the machines to minimize cost. A cost table showing the cost incurred by each employee on each machine follows:

-			Mac	hine		
Employees	Α	В	С	D	E	F
1	12	7	20	14	8	10
2	10	14	13	20	9	11
3	5	3	6	9	7	10
4	9	11	7	16	9	10
5	10	6	14	8	10	12

Because of union rules regarding departmental transfers, employee 3 cannot be assigned to machine E, and employee 4 cannot be assigned to machine B. Solve this problem, indicate the optimal assignment, and compute total minimum cost.

A grocery store orders milk from a diary on weekly basis. The manager of the store has developed the following probability distribution for demand per week:

Demand (cases)	Probability
15	.20
16	.25
17	.40
18	.15

15

The milk costs the grocery \$10 per case and sells for \$16 per case. The carrying cost is \$ 0.05 case per week, and the shortage cost is \$ 1 per case per week.

a.	Simulate the ordering system for the grocery store for 20 weeks.
b.	Determine the total shortage cost.

Determine the service level. (Hint: Ratio of Total Sales/Total Demand)

3

c.

The Battery Park Stable feeds and houses the horses used to pull tourist-filled

carriages through the streets of Charleston's historic waterfront area. The stable owner, an ex-racehorse trainer, recognizes the need to set a nutritional diet

20

for the horses in his care. At the same time, he would like to keep the overall daily cost of feed to a minimum.

The feed mixes available for the horses' diet are an oat product, a highly enriched grain, and a mineral product. Each of these mixes contains a certain amount of five ingredients needed daily to keep the average horse healthy. The table below shows these minimum requirements, units of each ingredient per pound of feed mix, and costs for the three mixes.

DEED MIN

		FEED MIX		
DIET REQUIREMENT (INGREDIENTS)	OAT PRODUCT (UNITS/LB)	ENRICHED GRAIN (UNITS/LB)	MINERAL PRODUCT (UNITS/LB)	MINIMUM DAILY REQUIREMENT (UNITS)
А	2	3	1	6
В	0.5	1	0.5	2
С	3	5	6	9
D	1	1.5	2	8
Е	0.5	0.5	1.5	5
Cost/lb	\$0.09	\$0.14	\$0.17	

In addition, the stable owner is aware that an overfed horse is a sluggish worker. Consequently, he determines that a total of 6 pounds of feed per day is the most that any horse needs to function properly.

a. Formulate this problem and solve for the optimal daily mix of the three feeds.

b. Interpret the non-binding constraints

OR

National Insurance Associates carries an investment portfolio of stocks, bonds, and other investment alternatives. Currently \$200,000 of funds are available and must be considered for new investment opportunities. The four stock options National is considering and the relevant financial data are as follows:

			Stock	
	А	В	С	D
Price Per share	\$ 100.00	\$ 50.00	\$ 80.00	\$ 40.00
Annual rate of return per share	12	4	4.8	4
Risk per share	10	3.5	4	3.2
National's top management has stipulated the	e following investment	guidelines: The annua	al rate of return for t	he portfolio must be at least
0% of the total investment and no one stock of	can account for more that	in 50% of the total do	llar investment. The	above information was used
o formulate a linear programming problem to	develop an investment	portfolio that minimiz	zes risk as given belo	ow.

Let A = number of shares of stock A; B = number of shares of stock B; C = number of shares of stock C; D = number of shares of stock D.

Min	10 <i>A</i>	+	3.5 <i>B</i>	+	4 <i>C</i>	+	3.2 <i>D</i>												
s.t.																			
	100A	+	50B	+	80 <i>C</i>	+	40D	=	200,000										
	12A	+	4B	+	4.8 <i>C</i>	+	4D	\geq	18,000	(9% of 200,00)									
	100A							\leq	100,000										
			50B					\leq	100,000										
					80 <i>C</i>			\leq	100,000										
							40D	\leq	100,000										
					А,	В, С	C, D ≥	0											
Solve the	above using S	olver a	nd generate t	he sensi	tivity report t	o answe	er the follow	ing ques	stions:										
a.	How many	shares	are allocated	l to each	of the four v	ariables	? What is th	e total r	isk associated with	this portfolio?									
b.	What are t	he obje	ctive coeffici	ent rang	ges for the fou	ır variat	oles? Interpre	et these	ranges.										
c.	Suppose th	at the f	irm decides t	that the	annual rate of	return	must be at le	ast 10%	6 (i.e. 20000). Wha	at would be the impact on the									
	because of this	s chang	e ?																
d.	If the man	agemer	t insists on a	allocatin	g some share	s to sto	ck B but doe	es not w	ant the overall ris	k to increase, what will your									
advise be	to the manage	ement?																	
e.	"If we red	ice the	maximum al	lowable	dollar invest	ment in	Stock D by	20,000	, the overall risk v	vill also reduce". Is the given									
statement	correct? Expl	ain.								statement correct? Explain.									