K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

May-June 2024

(B.Tech) Program: Information Technology Scheme I/II/IIB/III: IIB

Supplementer Regular Examination: SY Semester: IV Course Code: ITC404 and Course Name: Automata Theory

Date of Exam: 01 102/2024

Duration: 2.5 Hours

Max. Marks: 60

Instructions:

(1) All questions are compulsory.

(2) Draw neat diagrams wherever applicable.

(3) 11330	me suitable data, if necessary.	Max. Marks	СО	BTL
Qu-1	Solve any SIX questions out of EIGHT.	12		
i)	Differentiate between left linear grammar and right linear grammar	2	CO1	3
ii)	Define Nondeterministic Finite Automata in formal mathematical form	2	CO2	1
iii)	What do you mean by ambiguous grammar?	2	CO3	1
iv)	What are PUSH an POP operations of Pushdown Automata?	2	CO4	2
v)	What do you mean by automata as acceptor, transformer?	2	CO5	2
vi)	What is the backend and frontend of the compiler?	2	CO6	2
vii)	What are the limitations of finite automata?	2	CO2	2
viii)	Define Turing Machine formally.	2	CO5	1
Qu-2	Solve any FOUR questions out of SIX.	16		
i)	Describe in plain English language denoted by regular expression (0+1)*101(0+1)*	4	CO1	2
ii)	Differentiate between Deterministic and Nondeterministic Finite Automata	4	CO2	3
iii)	Prove that the following grammar is ambiguous $S \rightarrow aS \mid aSbS \mid \epsilon$	4	CO3	2
iv)	Explain Chomsky Hierarchy.	4	CO4	2
v)	What is halting problem? Explain with suitable example.	4	CO5	2
vi)	List the phases of complier and explore the Lexical Analyzer phase of compiler.	4	CO6	2
Qu-3	Solve any TWO questions out of THREE.	16	1-2	

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

May-June 2024

(B.Tech) Program: Information Technology Scheme I/II/IIB/III: IIB

Regular Examination: SY Semester: IV

Course Code: ITC404 and Course Name: Automata Theory

Date of Exam: 01/08/2024

Duration: 2.5 Hours

Max. Marks: 60

i)	State and Explain closure properties of Regular languages	8	CO1	2
ii)	Convert the NFA shown in Figure-1 into an equivalent DFA.	8	CO2	3
	a 2 a,b 3 Figure-1: NFA			é
iii)	Convert the following grammar G into Greibach Normal Form (GNF). $S \rightarrow XA BB$ $B \rightarrow b SB$ $X \rightarrow b$ $A \rightarrow a$	8	CO3	3
Qu-4	Solve any TWO questions out of THREE.	16		
i)	Design PDA for L={ $a^n b^n n \ge 1$ }.	8	CO4	5
ii)	Design TM to accept the language $L = \{a^nb^nc^n \mid n \ge 1\}$.	8	CO5	5
iii)	Let L be the language of balanced strings of parentheses and the CFG for the language of balanced strings of parentheses is given with productions $S \rightarrow [S] \mid SS \mid \epsilon$ Design a nondeterministic top-down PDA corresponding to the given CFG.	8	CO4	5
