K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Program: B.Tech Scheme: II/IIB

Supplementary: Examination: SY Semester: IV

Course Code: CEC401/ITC401/AIC401

Course Name: Applications of Mathematics in Engineering-II

Date of Exam: 07/8/2024(Tuesday) Duration: 02.5 Hours Max. Marks: 60

(1) A (2) D	uctions: All questions are compulsory. Oraw neat diagrams wherever applicable. Assume suitable data, if necessary.		3 to G	
4		Max. Marks	CO	BT level
21	Solve any six questions out of eight:	12	dia	ac
i)	If $A = \begin{bmatrix} x & 4x \\ 2 & y \end{bmatrix}$ has eigen values 5 and -1, find the values of x and y.	2	1	Ap
ii)	$\int_C (\bar{z} + 2z) dz \text{ along the circle } x^2 + y^2 = 1$	2	2	Ap
iii)	If R^3 has the Euclidean inner product , find k such that u,v are orthogonal where $u=(k,k,1)$, $v=(k,5,6)$	2	2	Ap
iv)	If X and Y are independent Poisson variates with mean 2 and 3. Find the variance of 3X-2Y.	2	4	Ap
v)	Consider the following LPP $Maximise z = 2x_1 - 3x_2 + 4x_3$	2	5	Ap
	Subject to $2x_1 + x_2 + 4x_3 = 11$, $3x_1 + x_2 + 5x_3 = 14$, $x_1, x_2, x_3 \ge 0$ Determine(i) all basic solutions (ii) feasible basic solutions	T S Course		•
vi)	Find the stationary point of $-6x_1 - 8x_2 - 10x_3 + x_1^2 + x_2^2 + x_3^2$	2	6	Ap
vii)	Find the eigen values of $A^3 + 5A + 8I$ if $A = \begin{bmatrix} -1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & -2 \end{bmatrix}$	2	1	Ap
viii)	Evaluate $\int_C \frac{\cos z dz}{z}$ where C is the ellipse $9x^2 + 4y^2 = 1$	2	2	Ap
Q.2	Solve any four questions out of six.	16		
i)	Find the characteristic equation of the matrix A and find the matrix represented by $A^8 - 5 A^7 + 7 A^6 - 3 A^5 + A^4 - 5 A^3 + 8A^2 - 2A + I$,	4	1	Ap

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Program: B. Tech Scheme: III/IIB

Supplementary Examination: SY Semester: IV

Course Code: CEC401/ITC401/AIC401

Course Name: Applications of Mathematics in Engineering-II

Date of Exam: 0718/24 (Tuesday)

Duration: 02.5 Hours Max. Marks: 60

		Date of Exam: 07/8/24 (Tuesday)	•		:	
			4	2	Ap	1
i)	Obt	ain Laurent's expansion of $\frac{4z+3}{z(z-3)(z+2)}$ valid for $2 < z < 3$.	4	3	Ap	+
	Cho	by that $V = \{(x,y) x = 3y\}$ is a subspace of \mathbb{R}^2 .	4	4	Ap	-
iv)	The	by that $V = \{(x,y) x = 3y\}$ is a steep eincome of a group of 10,000 was found to be normally distributed with an of ₹750 and standard deviation of ₹50. What is lowest income of	9 8			
	me	an of ₹750 and suitement and ₹750 and \$150 and	4	5	A	р
v)		onstruct the dual of the following LPP Minimise $z = 3x_1 - 2x_2 + x_3$ ubject to $2x_1 - 3x_2 + x_3 \le 5$, $4x_1 - 2x_2 \ge 9$,	1 3 A J			
		$4x_1 + 2x_2 = 8$, $x_1, x_2 \ge 0$ x_3 unrestricted	4	1	6	Ap
vi	-	Using Lagrange's multipliers, solve the following NLPP Optimise $z = 6x_1^2 + 5x_2^2$, Subject to $x_1 + 5x_2 = 7$, $x_1, x_2 \ge 0$.	•			
-	-	Solve any two questions out of three.		6		
-	Q.3 (i)	and the diagonal sable. Also find the diagonal	8		1	Aj
		Show that the following matrix $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ form and a diagonalising matrix $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$		-	2	Δp
	ii)	Evaluate $\int_C \frac{2z-1}{z(2z+1)(z+2)} dz$ where C is the circle $ z =1$	8		3 A	Ap
	iii)	Evaluate J_C $\overline{z(2z+1)(z+2)}$ to Let R^3 have the Euclidean inner product. Use Gram-S amidt process to transform the basis of subspace $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ into orthogonal basis, where $\mathbf{u}_1 = (1,0,1,1), \mathbf{u}_2 = (-1,0,-1,1), \mathbf{u}_3 = (0,-1,1,1)$	1	1	1	7