COMP IT AIDS CECSOT ITC301 ALCOOT

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov - Dec 2024

Program: B. Tech Scheme: III

Regular Examination: SY Semester: III

Course Code: AIC301_III and Course Name: Applications of Mathematics in Engineering-I Max. Marks: 60

Date of Exam: 26.11.24 Duration: 02.5 Hours

Instructions:

(1)All questions are compulsory.

(2)Draw neat diagrams wherever applicable.

(3) Assume suitable data, if necessary.

Q. No.	Question	Max. Marks	со	BT
Q1	Solve any two questions out of three: (05 marks each)	10		
a)	Find the Laplace transform of $\int_0^t u^{-1}e^{-u}Sinu\ du$		COI	03
b)	For the function $f(x) = \begin{cases} x & , 0 < x \le \pi \\ 2\pi - x & , \pi \le x < 2\pi \end{cases}$ in $(0,2\pi)$ the values of constants are $a_0 = \frac{\pi}{2}$, $a_n = \frac{-2}{\pi n^2} [1 - (-1)^n]$, $b_n = 0$. Then prove that $\frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots$		CO3	03
c)	Obtain the correlation coefficient from the following data X 23 27 28 29 30 31 33 35 36 39 Y 18 22 23 24 25 26 28 29 30 32		CO5	03
Q 2	Solve any two questions out of three: (05 marks each)	10		
a)	Using partial fraction method, find $L^{-1}\left(\frac{s+2}{s^2(s+3)}\right)$.		CO2	-03
b)	Find the orthogonal trajectories of family of curves $2x - x^3 + 3xy^2 = a$		CO4	03
c)	A random variable X has the following probability function	Ty.	CO6	03
Q.3	Solve any two questions out of three. (10 marks each)	20		
a)	i)Prove that $\int_0^\infty \frac{\sin 2t + \sin 3t}{te^t} dt = \frac{3\pi}{4}$	7	CO1	03
	ii) Find $L[e^{-4t} \int_0^t u \sin 3u du]$	3		

COMP/IT/AIDS CEC301/ITC301/AIC301

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov - Dec 2024

Program: B. Tech Scheme: III

Regular Examination: SY Semester: III

Course Code: AIC301 III and Course Name: Applications of Mathematics in Engineering-I Date of Exam: 26. 11. 24. Duration: 02.5 Hours Max. Marks: 60

b)	i) Find the Fourier series $f(x) = \begin{cases} 2 & -2 < x < 0 \\ x & 0 < x < 2 \end{cases}$							7	CO3	03			
	ii) For the function $f(x) = e^{-x}$, $0 < x < 2\pi$, find a_0 , a_n .								3				
c)	i) Fit a second degree parabolic curve to the following data and estimate the production in 1982							7	CO5	03			
	Year(X)	1974	1975	1976	1977	1978	1979	1980	1991				
	Production (Y) (in tons)	12	14	26	42	40	50	52	53				
	ii) Calculate Spearman's coefficient of rank correlation from the following data X 18 20 34 52 12								3				
	X 18 20 34 52 12 Y 39 23 35 18 46												
Q.4	Solve any two questions out of three. (10 marks each)												
a)	i) Using convolution method, find $L^{-1}\left[\frac{1}{(s+3)(s^2+2s+2)}\right]$							6	CO2	03			
	ii) Find $L^{-1}\left[\tan^{-1}\left(\frac{a}{s}\right)\right]$										4		
b)	i) Find the analytic function $f(z) = u + iv$ in terms of z by Milne Thomson method if $u - v = (x - y)(x^2 + 4xy + y^2)$							6	CO4	03			
	ii) Find the constants a, b, c, d if $f(z) = x^2 + 2axy + by^2 + i(cx^2 + 2dxy + Y^2)$ is analytic.								4				
c)	i) Find the moment generating function of the following distribution $\begin{array}{ c c c c c c c c c c c c c c c c c c c$							6	CO6	03			
	ii) From a city population, the probability of selecting Male or player is $^{7}/_{10}$, a male player is $^{2}/_{5}$ and a male, if a player is already selected is $^{2}/_{3}$. Find the probability of selecting (a) Non player, (b) A male, (c) A player, if male is selected first							4					