ALUS/AIC305

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov - Dec 2024-2025

(B. Tech) Program: Artificial Intelligence & Data Science Scheme :- JUB

Regular Examination: SY Semester: III

Course Code: AIC305 and Course Name: Discrete structure& Data Science

Date of Exam: 30/11/2024 Duration: 02.5 Hours Max. Marks: 60

Instructions:

(1)All questions are compulsory.

(2)Draw neat diagrams wherever applicable.

(3) Assume suitable data, if necessary.

Q. No.	Question	Max. Marks	СО	BT level
Q 1	Solve any two questions out of three: (05 marks each)	10	The last	
a)	Prove $(p \land q)$ and $\sim p \lor \sim q$) are Logically equivalent (De Morgan's laws)		1	Ap
b)	Consider the set A $\{1,2,3,4,5\}$ Find the cardinality of relation $R = \{ \x,y \in A \text{ and } x \leq y\}$. Write the matrix and draw the graph which representing R.		2	Ap
c)	Consider the lattices L1= {1, 2, 4}, L2={11,3, 91}. Under divisibility. Draw the lattice L1 x L2.		3	Ap
Q 2	Solve any two questions out of three: (05 marks each)	10		
a)	How many different binary numbers can be generated if the length of the number is 5?		4	Ap
b)	Define Monoid and it's conditions.		5	Ap
c)	Can a single graph of 8 vertices have 40 edges excluding self-loop?		6	U
Q.3	Solve any two questions out of three. (10 marks each)	20		
a)	Solve that $1^3 + 2^3 + 3^3 + \dots + n^3 = (1+2+3+\dots)^2$ by Mathematical Induction		1%	Ap
b)	Solve the recurrence relation $2a_{n+2}-11a_{n+1}+5a_n=0$; $n \ge 0$, $a_0=2$, $a_1=-8$		4	An
c)	Consider the (3,5) group encoding function $e:B^3 \rightarrow B^5$ defined by $e(000)=00000 \qquad e(100)=10011 \qquad e(001)=00110 \qquad e(101)=10101 $ $e(010)=01001 \qquad e(110)=11010 \qquad e(011)=01111 \qquad e(111)=11100 $ Decode the following words relative to maximum likelihood decoding function. i) 11001 ii) 01010 iii) 00111.		5	Ap

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov - Dec 2024-2025

(B. Tech) Program: Artificial Intelligence & Data Science Scheme :-IIB

Regular Examination: SY Semester: III

Course Code: AIC305 and Course Name: Discrete structure& Data Science

Date of Exam: 30/11/2024

Duration: 02.5 Hours

Max. Marks: 60

Q.4	Solve any two questions out of three. (10 marks each)	20		
a)	Let $A = \{1,2,3,4\}$ and Let $R = (1,1),(1,4),(2,2),(2,3),(3,2),(3,3),(4,1),$ (4,4). Find Transitive closure by Warshall's algorithm	POTENT THE	2	An
b)	For the set X={ 2,3,6,12,24,36}, a relation ≤ is defined as x≤y if x divide y. Draw the Hasse diagram for (x,≤). Answer the following i) What are the maximal and minimal elements? ii) Give one example of chain and antichain Is the Poset is lattice.	n, ang si	3	Ap
c)	Determine the Eulerian path circuit if any ,in the following graphs which is shown in fig	A rue se	6	Ap
