Paper / Subject Code: 50901 / Applied Mathematics-III SE/comps/sem III/cherce based/08-05-19 Q. P. Code: 21237 Time: 3 Hours Marks: 80 Note: 1) Q.1 is COMPULSORY. - 2) Attempt ANY 3 questions from Q.2 to Q.6 - 3) Use of scientific calculators allowed. - 4) Figures to right indicate marks. - Q.1 a) Find the Laplace transform of t e^t sin2t cost. (05) b) Find the inverse Laplace transform of $\frac{s+2}{s^2(s+3)}$ (05) - c) Determine whether the function $f(z) = x^2 y^2 + 2ixy$ is analytic and if so find its derivative. (05) - d) Find the Fourier series for $f(x) = e^{-|x|}$ in the interval $(-\pi, \pi)$. (05) - Q.2 a) Evaluate $\int_0^\infty \frac{e^{-t} \cos t}{te^{4t}} dt$ (06) - b) Find the Z- Transform of $f(k) = \begin{cases} 3^k, & k < 0 \\ 2^k, & k \ge 0 \end{cases}$ (06) - c) Show that the function u = 2x (1 y) is a harmonic function. Find its harmonic conjugate and corresponding analytic function. (08) - Q.3 a) Find the equation of the line of regression of y on x for the following data (06) | TV 110 110 110 110 110 110 110 | 7 20 25 | |--------------------------------|-------------| | X 10 12 13 16 17 | 20 23 | | V - 140 - 60 - 64 - 65 - 66 | 100 05 | | y 19 22 24 27 29 | 1 33 3/ | - b) Find the bilinear transformation which maps z = 2, 1, 0 onto w = 1, 0, i. (06) - c) Obtain the expansion of $f(x) = x (\pi x)$, $0 < x < \pi$ as a half range cosine series. Hence show that $$\sum_{1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$$. (08) Q.4 a) Find the inverse Laplace Transform by using convolution theorem $\frac{1}{(s^2+1)(s^2+9)} \tag{06}$ b) Calculate the coefficient of correlation between Price and Demand. (06) Price : 2, 3, 4, 7, 4. Demand: 8, 7, 3, 1, 1. ### Paper / Subject Code: 50901 / Applied Mathematics-III ## S.E/comp/sem III/choice Based/08-05-19. Code: 21237 c) Find the inverse Z-transform for the following; i) $\frac{z}{z-5}$, |z| < 5 ii) $\frac{1}{(z-1)^2}$, |z| > 1 Q.5 a) Find the Laplace transform of e^{-t} sint H(t - π) (06) - b) Show that the set of functions $\{\sin x, \sin 3x, \sin 5x, \dots\}$ is orthogonal over $[0, \pi/2]$. Hence construct orthonormal set of functions. (06) - c) Solve using Laplace transform $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = 3t e^{-t}$, given y(0) = 4 and y'(0) = 2. (08) - Q.6 a) Find the complex form of Fourier series for f(x) = 3x in $(0, 2\pi)$. (06) - b) If f(z) is an analytic function with constant modulus then, prove that f(z) is constant. (06) c) Fit a curve of the form $y = ax^b$ to the following data. (08) | - | X | 1 | 2 | 3 | 4 | |---|---|-----|---|----|----| | | у | 2.5 | 8 | 19 | 50 | ************ | | Early Contract of the Marie | THE PARTY | |-------|---|-----------| | | Paper Subject Code: 39303 Commune SEM-III - CHOSCE BASE - 14/05/201 Paper Subject code: 50902 Digntal Logic Paper Subject code: 3 Hours Design and A | 9 - Comi | | | CAN TIL - CHOICE BASE - 141091201 | | | E | JE 1 1 201 code: Sogo Dighter by | Marks:80) | | | Paper [Sub get code: 50902 Dignted code (Time: 3 Hours) | val-192 | | N. B | (1) Question No. 1 is compulsory | | | N.B | I | | | | (2)Assume suitable data in increase, (3)Attempt any three questions from remaining questions | | | | (S)Accenter and | | | 1 | Attempt ant 5 | (4) | | 1 | l the octal hinary and nexquecima and | (4) | | | 1's and 1's complement means | (4) | | | (c) Perform (52) ₁₀ - (68) ₁₀ in BCD using 9's complement. | | | 4 | (d) State De Morgan's theorem. Prove On Airo | (4) | | 1 | NOR configuration | (4) | | | (e) Encode the data bits 111010001using Hamming code. | X | | | (f) Explain SOP and POS and solve the following damp | (4) | | | $F(A,B,C,D)=\pi M(1,3,5,6,7,10,11)+d(2,4)$ | (4) | | | (g) Explain lockout condition. How can it be avoided | | | | (a) Reduce equation using Quine McCluskey method and realize circuit using | (10) | | 2 | (a) Reduce equation using Quine McCluskey in a | | | | basic gates. $-(4.5,6.13.13.14) + d(2.4)$ | (40) | | | $F(A,B,C,D) = \sum_{n=0}^{\infty} (1,5,6,12,13,14) + d(2,4)$ | (10) | | | (b) Design 4-bit BCD subtractor using IC 7483. | (5) | | | 3 (a) Implement the following using only one 8:1 Mux. | (5) | | | $= (A \cdot B \cdot C \cdot D) = \sum_{i=1}^{n} (0.2.4.6.8.10, 12)^{14}$ | (5) | | | | • • | | | (b) Design a Full Subtractor using only NAND gates. (c) Design a logic circuit to convert 4-bit gray code to its corresponding BCD code | E. (20) | | 1 | (c) Design a logistation | | | | Court cheed | | | | 4(a) Compare different logic families with respect to fan in, fan out, speed, | (5) | | | I I I I I I I I I I I I I I I I I I I | (5) | | | (b) Implement 3 bit binary to gray code converter using both | (10) | | | (c) Explain 4 bitbidirectional shift register. | | | | [- 사람이 하나 하다] 다른 사람들은 사람들은 사람들은 사람들이 모든 그래 아닌지만 이야기를 하는 것이다. | (10) | | | 5 (a) Design mod 13 synchronous counter using T flipflop | (10) | | | (b) Convert SR flipflop to JK flipflop and D flipflop. | | | 337 | | (20) | | 33 | 6 Write short note on (any four):- | | | | (a) ALU | | | | (b) 3 bit Up/Down Asynchronous Counter | | | | (c) Octal to Binary Encoder | | | | (d) 4-bit Universal shift register | | | | (e) VHDL | | | 129 6 | 1 N P S N W N P N W N P N N P N N P N P N P N P | | ### Paper / Subject Code: 50903 / Discrete Structures SE 18em III / Comp. / Choice Based 120-05-2019 QP CODE: 40415 (3 hrs) Max. Marks: 80 - 1) Question no.1 is compulsory. - 2) Solve any THREE questions out of remaining FIVE questions. - 3) All questions carry equal marks as indicated by figures to the right. - 4) Assume appropriate data whenever required. State all assumptions clearly. Q.1 a) Prove using Mathematical Induction (05M) 2+5+8+...+(3n-1)=n(3n+1)/2 b) Find the generating function for the following finite sequences (05M) i) 1,2,3,4,... ii) 2,2,2,2,2 c) Let A = {1, 4, 7, 13} and R = {(1,4), (4,7), (7,4), (1,13)} Find Transitive Closure using Warshall's Algorithm (05M) d) Let f : R O R, where f(x) = 2x - 1 and $f^{-1}(x) = (x+1)/2$ (05M) Find $(f O f^{-1})(x)$ Q.2 a) Define Lattice. Check if the following diagram is a lattice or not. (04M) b) Prove that set G = {1,2,3,4,5,6} is a finite abelian group of order 6 with respect to multiplication module 7 (08 M) c) A travel company surveyed it's travelers, to learn how much of their travel is taken with an Airplane, a Train or a Car. The following data is known; make a complete Venn Diagram with all the data. The number of people who flew was 1307. The number of people who both flew and used a train was 602. The people who used all three were 398 in number. Those who flew but didn't drive came to a total of 599. Those who drove but did not use a train totaled 1097. There were 610 people who used both trains and cars. The number of people who used either a car or a train or both was 2050. Lastly, 421 people used none of these Find out how many people drove but used neither a train nor an airplane, and also, how many people were in the entire survey. (08 M) Q.3 a) Prove $\neg (p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent by developing a series of logical equivalences. (04 M) b) Consider the (3,5) group encoding function defined by (08 M) e(000)=00000 e(001)=00110 e(010)=01001 e(011)=01111 e(100)=10011 e(101)=10101 e(110)=11010 e(111)=11000 Decode the following words relative to a maximum likelyhood decoding function. i) 11001 ii) 01010 iii) 00111 c) Mention all the elements of set D₃₆ also specify R on D₃₆ as aRb if a | b. Mention Domain and Range of R. Explain if the relation is Equivalence Relation or a Partially Ordered Relation. If it is a Partially Ordered Relation, draw its Hasse Diagram. (08 M) QP CODE: 40415 - Q.4 a) Explain Extended pigeonhole Principle. How many friends must you have to guarantee that at least five of them will have birthdays in the same month. (04 M) - b) Define Euler Path and Hamiltonian Path. - i) Determine Euler Cycle and path in graph shown in (a) - ii) Determine Hamiltonian Cycle and path in graph shown in (b) - c) In a group of 6 boys and 4 girls, four children are to be selected. In how many different ways can they be selected such that at least one boy should be there? (08 M) - Q.5 a) Let G be a group. Prove that the identity element e is unique. (04M) - b) A pack contains 4 blue, 2 red and 3 black pens. If 2 pens are drawn at random from the pack, NOT replaced and then another pen is drawn. What is the probability of drawing 2 blue pens (08M) - c) Let A be a set of integers, let R be a relation on AXA defined by (a,b) R (c,d) if and only if a+d=b+c. Prove that R is an equivalence Relation. (08M) - Q.6 a) Define reflexive closure and symmetric closure of a relation. Also find reflexive and symmetric closure of R_s (04 M) - $R = \{(1,1), (1,2), (1,4), (2,4), (3,1), (3,2), (4,2), (4,3), (4,4)\}$ - b) Let H= | 1 | 0 | 0 | |---|---|---| | 0 | 1 | 1 | | 1 | 1 | 1 | | 1 | 0 | 0 | | 0 | 1 | 0 | | 0 | 0 | 1 | - Be a parity check matrix. Determine the group code $e_{H}B^3 \rightarrow B^6$ - c) Determine if following graphs G_1 and G_2 are isomorphic or not. (M80) (M80) Ž X Z G1 G2 | Paper / Subject Code: 50904 / Electronics Circuits and Communication 24/05/19 SE (COMPOTER) Sem III - Choice Based Q. P. Code: Separ Subject Code: 50904 Electronic Circuits and Report Subject Code: (3 Hours) [Total Marks: 80] | 35356 | |--|-------------| | SE (COMPOTER) Sem III Cleet For Cliques and | Commucation | | (3 Hours) | malamortous | | B.: 1. Question ONE is Compulsory. 2. Solve any THREE out of remaining. 3. Draw neat and clean Diagrams. 4. Assume suitable data if required | | | 1. Attempt the following | | | A Explain with diagram Input and output characteristic of Common base configuration | 5 | | B. List the ideal Characteristic of op-amp C. Calculate the percent power saving an SSB signal if the AM wave is modulated to a | 5 | | depth of (a) 100 % and (b) 50% D. Define the term Information theory. Give definitions for Information Rate and Entropy | 5 | | D. Define the term in Figure below calculate V _{CB} , I _E , and I _B if β=100 | 10 | | Q.2. A. For the circuit shown in Figure below calculate V_{CB} , I_{E} , and I_{B} if β =100 | | | | | | VI " > ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ | | | $RE \gtrsim 1k$ $\gtrsim Rc=2.2k$ | | | Vee=4.7 V Vcc=10v | | | | | | | 10 | | B. Explain how op-amp can be used as a differentiator. | | | Crossing detector? Explain with diagram | 5
5 | | | | | C. Use op-amp IC/41 to realize the expression | 5
5 | | V0=5V ₁ +2V ₂ -3V ₃ D. What is a Nyquist criteria? What is its significance | 3 | | the wave forms after each block. | 10
10 | | | 10 | | $v(t)=12(1+\sin 12.300 \text{ x} 10.05) \sin 10.05 \sin 40.000 \cos 40.0000 40.00$ | | | 1. Sketch the envelope of this signal in time domain 2. Calculate modulation index, sideband frequencies, total power and bandwidth | | | | 10 | | Q.5. A. Compare PAM,PWM and PPM pulse modulation techniques B. Explain the generation of DSBSC using Balance modulator | 10 | | a Total TDM | 10
10 | | Q.6. A. What do you mean by multiplexing? Explain 1DM B. List down various parameters of op-amp with their practical values for IC741. Explain common mode gain and differential mode gain. | | | ************************************** | | # SE SEM-IIT - COMP - CHOICE BASE - 30/05/2019 | Time: 3 Hours | Marks: 80 | |--|----------------| | N.B: (1) Question No.1 is compulsory (2) Attempt any three questions of the remaining five questions (3 Figures to the right indicate full marks (4) Make suitable assumptions wherever necessary with proper justification | | | Q.1 (a) Explain Linear and Non-Linear data structures. (b) Explain Priority Queue with example. (c) Write a program in 'C' to implement Quick sort. | (5)
(5) | | Q.2 (a) Write a program to implement Circular Linked List. Provide the following operations: | | | (i) Insert a node . (ii) Delete a node (iv) Display the list | (10) | | (b) Explain Threaded Binary tree in detail | (10) | | Q.3 (a) Explain Huffman Encoding with suitable example (b) Write a program in 'C' to check for balanced parenthesis in an expression | (10) | | using stack | (10) | | Q.4 (a) Write a program in 'C' to implement Queue using array.(b) Explain different cases for deletion of a node in binary search tree. Write for each case | | | | (10) | | Q.5 (a) Write a program in 'C' to implement Stack using Linked-List .Perform the operations: (i) Push (ii) Pop (iii) Peek | following (10) | | (iii) Display the stack contents (b) Explain Depth First search (DFS) Traversal with an example. Write the recfunction for DFS | | | | (10) | | Q.6. Write Short notes on (any two) (a) Application of Linked-List –Polynomial addition (b) Collision Handling techniques (c) Expression Tree | (20) | | (d) Topological Sorting | |