K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Regular/ Examination: TY

Regular/ Examination: TY

Date of Exam: 22-11-2024

Nov – Dec 2024

Program: B. Tech- ComP
Scheme II

Semester: V
Course Code: CEC501

Course Name: Theoretical Computer Science
Duration: 2.5 Hours

Max. Marks: 60

3)Ass	aw neat diagrams wherever applicable. sume suitable data, if necessary. Ouestion	Max. Marks	СО	BT level
Q. No.	NAME OF THE OWNER OWNER.	17200		
21	Solve any two questions out of three: (05 marks each)	10	CO6	U
a)	State and prove Halting problem.		COI	Ap
b)	Design Moore machine to o/p i) A if i/p ends in 101 ii) B if i/p ends in 110 iii) Otherwise o/p C over input = {0,1}		vois	U
c)	Design PDA that accepts the language $L=\{a^nb^ma^n,m,n>=1\}$.		CO4	-
Q 2	Solve any two questions out of three: (05 marks each)	10		
a)	Design TM for recognizing L={ num of a > num of b }.		CO5	Ap
	DCA uning Anders Theorem	10	CO2	Ap
b)	Find Regular expression for the following DfA using Ardens Theorem.			76
c)	State and prove closure property of context free language.		CO3	U

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov – Dec 2024
Program: B. Tech – comp Scheme II / II B
Regular/ Examination: TY
Semester: V Course Code: CEC501
Course Name: Theoretical Computer Science
Duration: 2.5 Hours Max. Marks: 60

Q.3	Solve any two questions out of three. (10 marks each)	20		
a)	Explain the working of the Turing machine. Design Turing machine for the language $L=\{0^n1^n2^n / n>=1\}$.		CO5	Ap
b)	Convert the following grammar into CNF: S->aB/bA A->a/aS/bAA B->b/bSA/aBBA		CO3	Ap
c)	Design DFA to check whether the given ternary number is divisible by 5.		CO1	Ap
Q.4	Solve any two questions out of three. (10 marks each)	20		
a)	Give and explain formal definition of Pumping Lemma for Regular Language and prove that following language is not regular. $L=\{a^nb^n / n>=1\}$.	17	CO2	Ap
b)	Consider the DFA for the following over input {a,b}: a) Starts and ends with the same symbols. (4 M) b) Starts and ends with different symbols. (3 M) c) Must not contain substring aaa . (3 M)		CO1	Ap
c)	Design Turing machine for accepting even palindromes over {0,1}.		CO5	Ap