

Trimester: Oct – Dec 24					
Maximum Marks: 50 Examination: ETE Exam Date: 17/01/2025 Duration: 3 Hours					
Programme code: 01 Programme: MBA (BADS Minor)	Class: SY	Semester/Trimester: V			
College: K. J. Somaiya Institute of Management	Name of the department/Section/Center: Business Analytics				
Course Code: 217P01M532	Name of the Course: Predictive Analytics				
Instructions: 1. All questions are compulsory.					
2. Make suitable assumptions if required and state them.					

		1
	choice?	
	b) Looking at the PACF plot, do you see a sharp cutoff after a specific lag? What does that suggest about the AR process of the	
	data?	
	c) If the ACF shows a slow decay, what type of model would you consider for this time series? Would you prefer an AR model	
	or an MA model, and why?	
	d) In the context of time series modelling, how do you use the ACF and PACF plots to determine the parameters for ARIMA or	
	similar models?	
2	Following is the R code for the SARIMA model.	20
	setwd("D:/Predictive Modelling/triple exponential smoothing")	
	y<-read.csv("sales goods company.csv")	
	yt<-ts(y, start=2012, frequency=4)	
	plot(yt, col="black")	
	trend<-lm(yt ~ time(yt))	
	abline(trend, col="red")	
	adf.test(yt)	
	ytd1<-diff(yt, k=1)	
	adf.test(ytd1)	
	acf(ytd1) # q=0	
	pacf(ytd1) # p=1	
	arima(yt, order=c(1,1,0))	
	arima(yt, order=c(2,1,0))	
	arima(yt, order=c(1,2,1))	
	yt_seasonal<-diff(yt, k=4) #	
	adf.test(yt_seasonal) # D=0	
	acf(yt_seasonal) # Q=0	
	pacf(yt_seasonal) # P=2	
	arima(yt, order= $c(2,2,1)$, seasonal = list(order= $c(2,0,0)$, period=4))	
	model1<-arima(yt, order=c(2,2,1), seasonal = list(order=c(2,1,0), period=4))	
	arima(yt, order= $c(2,2,1)$, seasonal = list(order= $c(2,1,1)$, period=4))	
	library("forecast")	
	auto.arima(yt)	
	Box.test(residuals(model1), lag=10, type="Ljung-Box")	
	Give the answer to the following questions based on the above code	
	a) What is the purpose of using ts() function in the code? How does it transform the data?	
	b) What does the Augmented Dickey-Fuller test (adf.test()) assess in time series analysis? Frame the Null and Alternative hypo-	
	theses for this test. If the p-value for this test is 0.257, what conclusion would you draw, and what would be the next step to	
	perform the analysis?	
	c) How does the ARIMA model (1,1,0) differ from (2,1,0) and (1,2,1) in terms of model complexity and interpretation?	
	d) What do the parameters order=c(p,d,q) represent in the ARIMA model?	
	 e) How does the Box.test(residuals(model1), lag=10, type="Ljung-Box") function help in evaluating the model's residuals? What 	
	would indicate a good model fit? Frame the hypotheses.	
3	Following is the R code for exponential smoothing.	20
	# Set working directory and load the dataset	
		1

	setwd("D:/time series forecasting/ expo smoothing")		
	# Load data		
	demand_data <- read.csv("weekly_demand.csv")		
	# Convert to time series		
	demand_ts <- ts(demand_data, start = c(2020, 1), frequency = 52)		
	# Plot the original time series		
	plot(demand_ts, main = "Weekly Demand Time Series", col = "blue", pch = 19)		
	# Load the forecast package		
	install.packages("forecast")		
	library(forecast)		
	# Apply exponential smoothing		
	ets model <- ets(demand ts, model="ANN")		
	print("Exponential Smoothing Model:")		
	print(ets_model)		
	# Plot the forecast		
	plot(ets_model, main = " Exponential Smoothing Forecast", col = "darkgreen")		
	# Calculate residuals and MSE		
	residuals_ets <- residuals(ets_model)		
	mse_ets <- mean(residuals_ets^2)		
	print(paste("MSE for Exponential Smoothing:", mse_ets)		
(Give the answer to the following questions based on the above code		
	a) What steps would you take if there are missing values in the demand_data before converting it into a time series?		
	b) Explain the meaning of the "ANN" model components in the ets() function.		
	c) In what scenarios might the "ANN" model be insufficient for capturing the patterns in the data?		
	d) What is the significance of residuals in evaluating the performance of the ets model?		
	e) If you wanted to implement exponential smoothing for data with daily frequency, what changes would you make to the code?		