

					Semester: Aug	ust 2024 - Decer	mber 2024			
Max	ximu	m Marks	: 50	Examin	ation: ETE Exar	n Date: 09 .	January 2025	Dura	tion: 2 hour	S
Prog	gram	nme Cod	e: 09		Class	:		Seme	ester:	
Prog	gram	nme: MC	4		FY			I (SVI	J 2024)	
Coll	lege:				Nam	e of the Departn	nent / Sectio	n / Center:		
K. J.	Som	naiya Inst	itute of N	lanagemer	nt					
Cou	irse (Code: 317	7P09C101		Nam	e of the Course:	Business Stat	istics		
Instr	ructio	ons:								
•	Answ	er any five	e questions	S. ● .	All questions carr	y equal marks.	Assume	e suitable data	a, where & if I	necessary.
•	Use c	of calculate	or is allowe	ed.		L (10)				
1.		For the	following	table show	ing data of sam	ple of 10 custome	er orders of a	company ma	anufacturing	
		trousers,	answer th		questions.	Order Amount	Doumont	Customer	Delivery	
		No	Priority	Size	(in thousand)	(Rs.)	Method	Rating	Pin Code	
		1	Medium	0	5.8	8039985.34	Credit	4-stars	676557	
		2	Normal	4	12 5	469695158	Credit	3-stars	552623	
		3	High	2	23.7	3078469.12	Cash	5-stars	609854	
		4	High	2	19.6	2743521.59	Cash	5-stars	172272	
		5	Normal	0	3.9	2059373.74	Credit	5-stars	924612	
		6	High	4	47.1	7780230.91	Credit	4-stars	949767	
		7	Medium	6	2.4	7955397.47	Credit	3-stars	687093	
		8	Normal	8	6.8	8253812.19	Cash	3-stars	222008	
		9	Normal	2	3.2	9337480.73	Cash	4-stars	201566	
		10	Medium	4	4.7	5193134.79	Cash	4-stars	234374	
	а.	List all th	e variable	s along with	their scales of m	easurement.				04 marks
	b.	If one o	rder is sel method i	ected at ra s cash?	ndom, what is tl	ne probability that	either its pric	prity is norma	I or that its	03 marks
	C.	Compute	e the prob	ability that t	he order priority	is medium given th	nat customer ra	ating is 3-stars	S.	03 marks
2		loan rec	ords in a	branch of a	hank indicate th	at the probability	of a customer	defaulting or	the loan is	
۷.			auditor au	uditing the h	ank loan book se	lactic probability	0 a customers fo	veraulting of		
	а	What is t	the probab	nothing the c	avimum 3 custom	vers would default?		n auuning.		04 marks
	u. h	What is t	the probab	pility that all	10 customers wo	uld default?				02 marks
	C.	What is t	the probab	pility that no	ine of the 10 cust	omers would defau	ılt?			02 marks
	d.	What is t	the probab	pility that at	least one of the 2	10 customers would	d default?			02 marks
			I	5						
3.		A study	reveals that	at the loss a	amount on moto	r insurance policies	s is normally d	istributed with	h a mean of	
		loss valu	e of ₹4000) and a stan	dard deviation of	₹1330.	-			
	a.	Find the	probability	y that the lo	ss value will be n	nore than ₹3000.				03 marks
	b.	Find the	probability	y that the lo	ss value will be le	ess than ₹5000.				03 marks
	C.	lf a sam	ole of 100	policies is c	hosen randomly	, how may policies	can you expe	ct to have a l	oss value of	04 marks
		less than	₹4000.							
4.	a.	Accordir	ig to a ma	agazine, sola	ar power accoun	ts for only 1% of t	otal energy pr	oduced. If thi	s number is	05 marks
		based or	n a randon	n sample of	8000 electricity u	users, provide a 95º	% confidence i	nterval for the	e proportion	
		of users	of solar en	iergy.						

b. A transportation company wants to estimate the average length of time goods are in transit across the 05 marks

country. A random sample of fifty shipments gives a mean of 13 days and standard deviation of 4 days. Give a 95% confidence interval for the average transit time.

- 5. a. A lighting company has developed a new bulb whose design specifications call for a light output of 960 05 marks lumens compared to an earlier model that produced only 750 lumens. The company's data indicate that the standard deviation of light output for this type of bulb is 18.4 lumens. From a sample of 20 new bulbs, the testing committee found an average light output of 954 lumens per bulb. At a 0.05 significance level, can the lighting company conclude that its new bulb is producing the specified 960 lumen output?
 - b. A random sample of 12 homes in a prestigious suburb of a city found the average appraised market value 05 marks to be ₹78,00,000, and the standard deviation was ₹4,90,000. Test the hypothesis that for all homes in the area, the mean appraised value is ₹82,50,000 against the alternative that it is less than ₹82,50,000. Use the 0.05 level of significance.
- a. In a survey of 811 female consumers, 300 indicated their preference for a particular brand of toothpaste. 05 marks In a similar survey of 750 male consumers, 255 indicated their preferences for that brand of toothpaste. At 0.05 level of significance, can it be concluded that female consumers are more likely to prefer that brand of toothpaste?
 - A survey of 25 senior level employees in a firm found the variance in their annual salaries to be 2.1. In the 05 marks same firm, a survey of 26 junior level employees found the variance in their annual salaries to be 11.1. can it be concluded at 0.05 level of significance that the population variance in the annual salaries of junior level employees is greater than that of senior level employees?
- 7. Nine dealers in a city were asked for their prices of two products A & B. The results of this survey are 10 marks given below. At α = 0.05, is it reasonable to assert that, on average, the product A is less expensive than product B.

Dealer	1	2	3	4	5	6	7	8	9
Product A Price (₹)	250	319	285	260	305	295	289	309	275
Product B Price (₹)	270	325	269	275	289	285	295	325	300

8. The number of customer arrivals at a mobile repairing shop over 400 hours are summarized below. At 10 marks 0.10 level of significance, can it be concluded that the customer arrivals at the mobile repairing shop follow a Poisson distribution with a mean customer arrival rate of 3 per hour?

				per neur		
Number of arrivals per hour	0	1	2	3	4	5 or more
Number of hours	20	57	98	85	78	62

Binomial Probability Distribution

n 10			Probability		
x	0.1	0.2	0.3	0.4	0.5
0	0.3487	0.1074	0.0282	0.0060	0.0010
1	0.3874	0.2684	0.1211	0.0403	0.0098
2	0.1937	0.3020	0.2335	0.1209	0.0439
3	0.0574	0.2013	0.2668	0.2150	0.1172
4	0.0112	0.0881	0.2001	0.2508	0.2051
5	0.0015	0.0264	0.1029	0.2007	0.2461
6	0.0001	0.0055	0.0368	0.1115	0.2051
7	0.0000	0.0008	0.0090	0.0425	0.1172
8	0.0000	0.0001	0.0014	0.0106	0.0439
9	0.0000	0.0000	0.0001	0.0016	0.0098
10	0.0000	0.0000	0.0000	0.0001	0.0010

For n = 10, for probability of success, p, ranging from 0.1 to 0.5, and for different values of x from 0 to 10

F Distribution

Denominator Degrees	Area in Upper									Numer	ator Degr	ees of Fre	edom						
of Freedom	Tail	1	2	3	4	5	6	7	8	9	10	15	20	25	30	40	60	100	1000
16	.10	3.05	2.67	2.46	2.33	2.24	2.18	2.13	2.09	2.06	2.03	1.94	1.89	1.86	1.84	1.81	1.78	1.76	1.72
	.05	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.35	2.28	2.23	2.19	2.15	2.11	2.07	2.02
	.025	6.12	4.69	4.08	3.73	3.50	3.34	3.22	3.12	3.05	2.99	2.79	2.68	2.61	2.57	2.51	2.45	2.40	2.32
	.01	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69	3.41	3.26	3.16	3.10	3.02	2.93	2.86	2.76
17	.10	3.03	2.64	2.44	2.31	2.22	2.15	2.10	2.06	2.03	2.00	1.91	1.86	1.83	1.81	1.78	1.75	1.73	1.69
	.05	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.31	2.23	2.18	2.15	2.10	2.06	2.02	1.97
	.025	6.04	4.62	4.01	3.66	3.44	3.28	3.16	3.06	2.98	2.92	2.72	2.62	2.55	2.50	2.44	2.38	2.33	2.26
	.01	8.40	6.11	5.19	4.67	4.34	4.10	3.93	3.79	3.68	3.59	3.31	3.16	3.07	3.00	2.92	2.83	2.76	2.66
18	.10	3.01	2.62	2.42	2.29	2.20	2.13	2.08	2.04	2.00	1.98	1.89	1.84	1.80	1.78	1.75	1.72	1.70	1.66
	.05	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.27	2.19	2.14	2.11	2.06	2.02	1.98	1.92
	.025	5.98	4.56	3.95	3.61	3.38	3.22	3.10	3.01	2.93	2.87	2.67	2.56	2.49	2.44	2.38	2.32	2.27	2.20
	.01	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51	3.23	3.08	2.98	2.92	2.84	2.75	2.68	2.58
19	.10	2.99	2.61	2.40	2.27	2.18	2.11	2.06	2.02	1.98	1.96	1.86	1.81	1.78	1.76	1.73	1.70	1.67	1.64
	.05	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.23	2.16	2.11	2.07	2.03	1.98	1.94	1.88
	.025	5.92	4.51	3.90	3.56	3.33	3.17	3.05	2.96	2.88	2.82	2.62	2.51	2.44	2.39	2.33	2.27	2.22	2.14
	.01	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43	3.15	3.00	2.91	2.84	2.76	2.67	2.60	2.50
20	.10	2.97	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.96	1.94	1.84	1.79	1.76	1.74	1.71	1.68	1.65	1.61
	.05	4.35	3,49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.20	2.12	2.07	2.04	1.99	1.95	1.91	1.85
	.02.5	5.87	4,46	3.86	3.51	3.29	3.13	3.01	2.91	2.84	2.77	2.57	2.46	2.40	2.35	2.29	2.22	2.17	2.09
	.01	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.09	2.94	2.84	2.78	2.69	2.61	2.54	2.43
21	.10	2.96	2.57	2.36	2.23	2.14	2.08	2.02	1.98	1.95	1.92	1.83	1.78	1.74	1.72	1.69	1.66	1.63	1.59
	.05	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.18	2.10	2.05	2.01	1.96	1.92	1.88	1.82
	.02.5	5.83	4.42	3.82	3.48	3.25	3.09	2.97	2.87	2.80	2.73	2.53	2.42	2.36	2.31	2.25	2.18	2.13	2.05
	.01	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31	3.03	2.88	2.79	2.72	2.64	2.55	2.48	2.37
22	.10	2.95	2.56	2.35	2.22	2.13	2.06	2.01	1.97	1.93	1.90	1.81	1.76	1.73	1.70	1.67	1.64	1.61	1.57
	.05	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.15	2.07	2.02	1.98	1.94	1.89	1.85	1.79
	.025	5.79	4.38	3.78	3.44	3.22	3.05	2.93	2.84	2.76	2.70	2.50	2.39	2.32	2.27	2.21	2.14	2.09	2.01
	.01	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26	2.98	2.83	2.73	2.67	2.58	2.50	2.42	2.32
23	.10	2.94	2.55	2.34	2.21	2.11	2.05	1.99	1.95	1.92	1.89	1.80	1.74	1.71	1.69	1,66	1.62	1.59	1.55
	.05	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.13	2.05	2.00	1.96	1.91	1.86	1.82	1.76
	.025	5.75	4.35	3.75	3.41	3.18	3.02	2.90	2.81	2.73	2.67	2.47	2.36	2.29	2.24	2.18	2.11	2.06	1.98
	.01	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21	2.93	2.78	2.69	2.62	2.54	2.45	2.37	2.27
24	.10	2.93	2.54	2.33	2.19	2.10	2.04	1.98	1.94	1.91	1.88	1.78	1.73	1.70	1.67	1.64	1.61	1.58	1.54
	.05	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.11	2.03	1.97	1.94	1.89	1.84	1.80	1.74
	.025	5.72	4.32	3.72	3.38	3.15	2.99	2.87	2.78	2.70	2.64	2.44	2.33	2.26	2.21	2.15	2.08	2.02	1.94
	.01	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	2.89	2.74	2.64	2.58	2.49	2.40	2.33	2.22

TANDAL	RD NORN	IAL DIST	RIBUTIC	ON: Table	Values R	epresent A	REA to t	he LEFT	of the Z so	core.
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.9	.00005	.00005	.00004	.00004	.00004	.00004	.00004	.00004	.00003	.00003
-3.8	.00007	.00007	.00007	.00006	.00006	.00006	.00006	.00005	.00005	.00005
-3.7	.00011	.00010	.00010	.00010	.00009	.00009	.00008	.00008	.00008	.00008
-3.6	.00016	.00015	.00015	.00014	.00014	.00013	.00013	.00012	.00012	.00011
-3.5	.00023	.00022	.00022	.00021	.00020	.00019	.00019	.00018	.00017	.00017
-3.4	.00034	.00032	.00031	.00030	.00029	.00028	.00027	.00026	.00025	.00024
-3.3	.00048	.00047	.00045	.00043	.00042	.00040	.00039	.00038	.00036	.00035
-3.2	.00069	.00066	.00064	.00062	.00060	.00058	.00056	.00054	.00052	.00050
-3.1	.00097	.00094	.00090	.00087	.00084	.00082	.00079	.00076	.00074	.00071
-3.0	.00135	.00131	.00126	.00122	.00118	.00114	.00111	.00107	.00104	.00100
-2.9	.00187	.00181	.00175	.00169	.00164	.00159	.00154	.00149	.00144	.00139
-2.8	.00256	.00248	.00240	.00233	.00226	.00219	.00212	.00205	.00199	.00193
-2.7	.00347	.00336	.00326	.00317	.00307	.00298	.00289	.00280	.00272	.00264
-2.6	.00466	.00453	.00440	.00427	.00415	.00402	.00391	.00379	.00368	.00357
-2.5	.00621	.00604	.00587	.00570	.00554	.00539	.00523	.00508	.00494	.00480
-2.4	.00820	.00798	.00776	.00755	.00734	.00714	.00695	.00676	.00657	.00639
-2.3	.01072	.01044	.01017	.00990	.00964	.00939	.00914	.00889	.00866	.00842
-2.2	.01390	.01355	.01321	.01287	.01255	.01222	.01191	.01160	.01130	.01101
-2.1	.01786	.01743	.01700	.01659	.01618	.01578	.01539	.01500	.01463	.01426
-2.0	.02275	.02222	.02169	.02118	.02068	.02018	.01970	.01923	.01876	.01831
-1.9	.02872	.02807	.02743	.02680	.02619	.02559	.02500	.02442	.02385	.02330
-1.8	.03593	.03515	.03438	.03362	.03288	.03216	.03144	.03074	.03005	.02938
-1.7	.04457	.04363	.04272	.04182	.04093	.04006	.03920	.03836	.03754	.03673
-1.6	.05480	.05370	.05262	.05155	.05050	.04947	.04846	.04746	.04648	.04551
-1.5	.06681	.06552	.06426	.06301	.06178	.06057	.05938	.05821	.05705	.05592
-1.4	.08076	.07927	.07780	.07636	.07493	.07353	.07215	.07078	.06944	.06811
-1.3	.09680	.09510	.09342	.09176	.09012	.08851	.08691	.08534	.08379	.08226
-1.2	.11507	.11314	.11123	.10935	.10749	.10565	.10383	.10204	.10027	.09853
-1.1	.13567	.13350	.13136	.12924	.12714	.12507	.12302	.12100	.11900	.11702
-1.0	.15866	.15625	.15386	.15151	.14917	.14686	.14457	.14231	.14007	.13786
-0.9	.18406	.18141	.17879	.17619	.17361	.17106	.16853	.16602	.16354	.16109
-0.8	.21186	.20897	.20611	.20327	.20045	.19766	.19489	.19215	.18943	.18673
-0.7	.24196	.23885	.23576	.23270	.22965	.22663	.22363	.22065	.21770	.21476
-0.6	.27425	.27093	.26763	.26435	.26109	.25785	.25463	.25143	.24825	.24510
-0.5	.30854	.30503	.30153	.29806	.29460	.29116	.28774	.28434	.28096	.27760
-0.4	.34458	.34090	.33724	.33360	.32997	.32636	.32276	.31918	.31561	.31207
-0.3	.38209	.37828	.37448	.37070	.36693	.36317	.35942	.35569	.35197	.34827
-0.2	.42074	.41683	.41294	.40905	.40517	.40129	.39743	.39358	.38974	.38591
-0.1	.46017	.45620	.45224	.44828	.44433	.44038	.43644	.43251	.42858	.42465
-0.0	.50000	.49601	.49202	.48803	.48405	.48006	.47608	.47210	.46812	.46414

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
1.6	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449
1.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327
1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062
1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670
2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169
2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574
2.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.98899
2.3	.98928	.98956	.98983	.99010	.99036	.99061	.99086	.99111	.99134	.99158
2.4	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.99361
2.5	.99379	.99396	.99413	.99430	.99446	.99461	.99477	.99492	.99506	.99520
2.6	.99534	.99547	.99560	.99573	.99585	.99598	.99609	.99621	.99632	.99643
2.7	.99653	.99664	.99674	.99683	.99693	.99702	.99711	.99720	.99728	.99736
2.8	.99744	.99752	.99760	.99767	.99774	.99781	.99788	.99795	.99801	.99807
2.9	.99813	.99819	.99825	.99831	.99836	.99841	.99846	.99851	.99856	.99861
3.0	.99865	.99869	.99874	.99878	.99882	.99886	.99889	.99893	.99896	.99900
3.1	.99903	.99906	.99910	.99913	.99916	.99918	.99921	.99924	.99926	.99929
3.2	.99931	.99934	.99936	.99938	.99940	.99942	.99944	.99946	.99948	.99950
3.3	.99952	.99953	.99955	.99957	.99958	.99960	.99961	.99962	.99964	.99965
3.4	.99966	.99968	.99969	.99970	.99971	.99972	.99973	.99974	.99975	.99976
3.5	.99977	.99978	.99978	.99979	.99980	.99981	.99981	.99982	.99983	.99983
3.6	.99984	.99985	.99985	.99986	.99986	.99987	.99987	.99988	.99988	.99989
3.7	.99989	.99990	.99990	.99990	.99991	.99991	.99992	.99992	.99992	.99992
3.8	.99993	.99993	.99993	.99994	.99994	.99994	.99994	.99995	.99995	.99995
3.9	.99995	.99995	.99996	.99996	99996	.99996	.99996	.99996	.99997	.99997

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score

Area or probability in the table give t values for an area or probability in the upper tail of the t distribution. For example, with 10 degrees of freedom and a .05 area in the upper tail, $t_{.05} = 1.812$.

Degrees	Area in Upper Tail											
of Freedom	.20	.10	.05	.025	.01	.005						
1	1.376	3.078	6.314	12.706	31.821	63.656						
2	1.061	1.886	2.920	4.303	6.965	9.925						
3	.978	1.638	2.353	3.182	4.541	5.841						
4	.941	1.533	2.132	2.776	3.747	4.604						
5	.920	1.476	2.015	2.571	3.365	4.032						
6	.906	1.440	1.943	2.447	3.143	3.707						
7	.896	1.415	1.895	2.365	2.998	3.499						
8	.889	1.397	1.860	2.306	2.896	3.355						
9	.883	1.383	1.833	2.262	2.821	3.250						
10	.879	1.372	1.812	2.228	2.764	3.169						
11	.876	1.363	1.796	2.201	2.718	3.106						
12	.873	1.356	1.782	2.179	2.681	3.055						
13	.870	1.350	1.771	2.160	2.650	3.012						
14	.868	1.345	1.761	2.145	2.624	2.977						

Chi-square Distribution

		Area in Right Tail		Degrees of	
0.20	0.10	0.05	0.025	0.01	Freedom
1.642	2.706	3.841	5.024	6.635	1
3.219	4.605	5.991	7.378	9.210	2
4.642	6.251	7.815	9.348	11.345	3
5.989	7.779	9.488	11.143	13.277	4
7.289	9.236	11.070	12.833	15.086	5
8.558	10.645	12.592	14.449	16.812	6
9.803	12.017	14.067	16.013	18.475	7
11.030	13.362	15.507	17.535	20.090	8
12.242	14.684	16.919	19.023	21.666	9
13.442	15.987	18.307	20.483	23.209	10