

SOMAIYA

VIDYAVIHAR UNIVERSITY

Somaiya School of Humanities and Social Science

QUESTION PAPERS

BRANCH: Master of Arts (Economics)	SEM: II		
	DEC-2024		

Sr. No.	Subject	Available
1.	231P26C104 – Mathematical Economics	
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		

LIBRARY

Seme	ster (November / Dec	ember 2024)	
Examination: E	nd Semester Examin	ation (PG Pro	grammes)
Programme code: 26 Programme: MA-Economics		Class: FY	Semester: I
Name of the Constituent College: S K Somaiya College		Name of t	he Department : Economics
Course Code: 231P26C104	Name of the Cours	e: Mathemati	ical Economics
uration: 2 Hrs. Maximum Marks: 60			
Instructions: 1) All questions are of 3) Use of Simple calculators allowed	compulsory 2) Figure	s to the right i	indicate full marks.

		Max Marks	CO PO Mappin
Q1		(15M)	g
A)	1) State properties of sets with respect to union, intersection and difference	04	1
	2) Define function and its related concepts with an example.	03	1
B)	1) For the following matrix A verify $AA^{T} = I$ where $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$	08	1
	2) Solve by Cramer's Rule: $3x-y+2z = 13$; $2x+y-z = 3$; $x+3y-5z = -8$		
	OR		
C)	i) Consider the functions given below, Justify which of them are one-one,	04	1
	onto and hence bijective:	03	
	-45 -5 -2 -2 -3 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5		
	n(x) -2 -1 0 1 2 4 -2 0 4 4 -2 0 4 4 -2 0 4 4 -2 0 4 -2 0 4 -2 0 4 -2 0 4 -2 0 4 -2 0 -3 4 -4 -4 -4 -4 -4 -4 -4 -4		
	ii) Given $f(x) = x^2 + 2$. draw graph of $f(x)$		
D)	i) Let Demand and Supply functions be : $Q_d = 51-3P$, $Q_s = 6P-10$. Find equilibrium price and quantity, P^* , Q^* by elimination of variables.	05	1
0.0	ii) Explain General Market Equilibrium	03	
Q2		(15M)	
A)	1) Find inverse of $A = \begin{bmatrix} 2 & -2 & 2 \\ 2 & 3 & 0 \\ 9 & 1 & 5 \end{bmatrix}$	05	2
	2) Explain Static Analysis.	02	
3)	1) Find dy/dx : (State the rules used)	06	2
	i) $(2x^{4/3} - 8^x) (6\log x + \frac{10}{\sqrt{x}})$ ii) $\frac{x + \sqrt{x}}{\sqrt{x} - 2}$		
	2) Find $\frac{d^2y}{dx^2}$: $e^x - 2x + 20$	02	
	OR		[P.T.O]

.2	1) Define injective, surjective and bijective functions. Give one example	05	2
)	for same. 2) calculate all partial derivatives for $f(x,y) = x^2y^2 + 3xy^2$	02	
))	 The cost for producing x units is Rs x²+2x +5 and price is Rs (30-x) per unit. Find profit function, cost and revenue function at x = 10. Define order and degree of differential equations, hence find the same for 12(d⁴y/dx⁴) - 2(dy/dx)⁴ + (d²y/dx²) + 4 = 0 	05	2
72		(15M)	
Q3 A)	1) Find extreme values: $I(x) = 3x^{2} - 30x^{2} + 133x^{2} - 13$	05 02	3
B)	Solve: i) $\int \frac{1}{\sqrt[3]{x}} dx$ ii) $\int (2e^x + 5\cos x) dx$ iii) $\int (x^4 - 12 + \frac{1}{x})x^2 dx$	08	3
	iv) $\int x^5 \sqrt{x} dx$		1
	OR	0.5	2
C)	1) check if differential equation is exact and hence solve : $(2xy + 6x)dx + (x^2 + 4y^3)dy = 0$	05	3
	2) Solve difference equation: $y_{t+1} = y_t + 3$; $y_0 = 5$	02	3
D)	Solve: i) $\int_0^1 (x + 5x^3) dx$ ii) $\int_2^3 (\frac{4x^2}{x} + 7) dx$ iii) $\int_2^4 (x^{5/2} + x) dx$ iv) $\int_0^1 (e^x + \sqrt[7]{x}) dx$		
		(15M)	
Q4	is sixon by :	05	4
A)	1) The marginal revenue of a company is given by: MR = 200 + 30Q + 5Q ² , Where Q is amount of units sold for a period. Find total revenue if at Q = 2 it is equal to 260. 2) State the areas where optimization can be applied.	02	
B)	Elaborate on terminologies used in dynamic programming. Explain characteristics of Dynamic Programming.	08	4
	OR	105	1
C)	supply function is $S(Q) = 100+Q^2$ Compute consumer and producer surprus	05	4
	2) What is optimization? List its types.		4
D)	Consider the following network. Find the optimal path to travel from a to cousing dynamic programming (give detailed steps):		