

SOMAIYA VIDYAVIHAR UNIVERSITY

Somaiya School of Humanities and Social Science

QUESTION PAPERS

BRANCH: Bachelor of Science (Economics)	SEM: II
	APR-2025

Sr. No.	Subject	Available
1.	231UC1C202 – Macro Economics: Theory	
2.	131U31C203 – Statistics for Economics II	
3.	131U01C401 – Microeconomics	
4.		
5.		
6.		
7.		
8.		
9.		
10.		

LIBRARY

April 2025
Examination: End Semester Examination (UG Programmes)

Programme code:31
Programme: BSC Economics
Name of the Constituent College: S K Somaiya College
Name of the Department: Economics

Course Code: 231UC1C202
Name of the Course: MACRO ECONOMICS:THROERY
AND POLICY

Duration: 2 Hrs.
Instructions: 1)Draw neat diagrams 2)Assume suitable data if necessary

Question No.		Max. Marks	Co Attainment
Q.1	Explain the Following		
A	Explain with some empirical data how improvement in education and health has helped to improvise economic growth.	08	01
В	Growing population plays significant role in development of nation, elaborate giving suitable example.	07	01
	OR		
С	Which all types growth is been explained under Harrod's growth model.	08	01
D	How does the Endogenous Growth Model address the limitations of the Solow Model regarding long-term growth?	07	01
Q.2	Explain the Following		
À	How do quantitative credit control measures help in regulating the money supply in an economy?	07	02
В	Mention in detail meaning and importance of public finance.	08	02
	OR		
С	Elaborate on government budget taxation and meaning of taxation.	07	02
D	List down the canons of good tax system.	08	02
Q.3	Explain the Following		
A	What are the key merits of direct taxes in terms of fairness and economic stability?	08	03
В	Derive IS Curve.	07	03
D	OR	5 3 2 1	
С	What is borrowing or debt financing in the context of a budget deficit?	08	03
D	Give wealth effect of debt financing.	07	03
Q.4	Explain the Following (any three)	15	
A A	Role of Foreign capital in economic growth		01
B	Reasons of regional imbalance in India		04
C	Full employment		04
D	Crowding out effect		03
E	Origin and scope of environmental economics		04

Examination: E	April 20 nd Semester Exami		(UG/PG P	rogrammes)
Programme code: Programme: B.sc Economics		C	Class: Y.B.SC	Semester: II
Name of the Constituent College	e: S K Somaiya		Name of t	he Department: Economics
Course Code: 131U31C203	Name of the C	ourse:	Statistics fo	or Economics-II
Duration: 2 Hr.	Maximum Ma	rks:6	0	
Instructions: 1)Draw neat diagr	ams 2)Assume suit	table d	ata if neces	sary 3)

Questio						Max.	CO
n No.						Marks	
0.1	Al A man huve	50 electric by	ulbs of Philips a	nd 50 electric b	ulhs	7M	CO 1
Q 1						7101	001
				verage life of 15			
				and HMT bulbs			
				eviation of 80 ho			
			nce in the meai	n life of the two	makes		
	of blubs? At 59	% l.o.s					
	Bl From the d	ata given helo	w about the tre	eatment of 250	natients	8M	CO 1
				the new treat			
	superior to the						
	Treatment	Favorable	Not	Total			
			favourable				
	New	140	30	170			
	Convention	60	20	80			
	al						
	Total	200	50	250		7M	CO 2
						/1//	CO 2
			OR				
			ON				
	Cl Fit a straigh	nt line trend fo	or the following	data and estim	ate the		
	trend for 2005		-				
	Year		Time series				
	1995		32				
	1996		38				
	1997		43				
	1998		45				
	1999		56				
	2000		60				
	2001		72				
	2002		75				
	2003		/5		1		

			- woonut	marces	s for the foll	owing uata		8M	CO 2	
			Pr	oducti	on (in hundr	ed units)				
	Year	1		11	111	IV				
	2002	47		56	49	43				
	2003	45		59	50	44				
	2004	46		63	52	41			FEMA	
	2005	45		61	50	42				
	2006	49		64	51	40				
	Al From th	ho foll								
2	group fou	r com	owing da modities	ata, cor hvjusi	nstruct a pricing Fisher inc	ce index nu	imber of the	7M	CO 3	
	Commod		P ₀	Q ₀	P ₁	Q ₁				
	A	2	2	40	5	75				
	В	4	+	16	8	40				
	С	1		10	2	24				
	D		5	25	10	60				
	Bì Calcula	te for	the follo	wing d				8M	CO 3	
	below				lata the inde	x number a	as given	8M	CO 3	
	i)weighted relative	d aggre	egative n	nethod	lata the inde	x number a	as given of price	8M	CO 3	
	i)weighted relative	d aggre	egative n	nethod	lata the inde	x number a	as given	8M	CO 3	
	i)weighted relative Commod	d aggre	Weigh	nethod	lata the inde	x number a	as given of price	8M	CO 3	
	i)weighted relative Commod A B	d aggre	Weigh 130 450	nethod	Base year	x number of average of Curre 1345	as given of price	8M	CO 3	
	i)weighted relative Commod A B C	d aggre	Weigh 130 450 75	nethod	Base year 550 630	Curre 1345 1250 335	as given of price	8M	CO 3	
	i)weighted relative Commod A B	d aggre	Weigh 130 450	nethod	Base year	x number of average of Curre 1345	as given of price	8M	CO 3	
	i)weighted relative Commod A B C D E	d aggre	Weigh 130 450 75 225 120	t	Base year 550 630 150 450 225	Curre 1345 1250 335 778 886	as given of price nt year			
	i)weighted relative Commod A B C D E	d aggre	Weigh 130 450 75 225 120	t	Base year 550 630 150 450 225	Curre 1345 1250 335 778 886	as given of price nt year	8M	CO 3	
	i)weighted relative Commod A B C D E	d aggre	Weigh 130 450 75 225 120	t	Base year 550 630 150 450 225	Curre 1345 1250 335 778 886	as given of price nt year			
	i)weighted relative Commod A B C D E	ity	Weigh 130 450 75 225 120	t come fi	Base year 550 630 150 450 225 OR	Curre 1345 1250 335 778 886	as given of price nt year			

•					And the state of t		
7	D] Use Sim	olex Metho	d to solve	the following		M8	CO 3
	Maximize Z	= 2X ₁ +5X ₂					
	Subject to	X₁+4X₂≤24	3X₁+X₂≤ 2°	1 X ₁ +X ₂ ≤9			
Q 3	A] Find Esti	mator of P	ossion Dis	stribution		7M	CO 4
	B] Find Esti	mator of B	inomial D	istribution		8M	CO 4
				OR			
	C] Find opti	imal transı	oortation :	method by vog	els approximation	7M	CO 4
	method						
		Х	Υ	Z	Supply		
	B	18 15	17	19	200		
	С	11	13	14	200		
	Demand	100	300	150			
	D] You are activities:	given the f	ollowing o	details for a pro	oject consisting of 8	8M	CO 4
	Activity	Dura (Day	ntion s)				
	A(1-2)	4					
	B(1-3)	6					
	C(1-5)	13					
	D(2-3)	5					
	E(2-4)	20					
	F(4-6)	10					
	G(3-6)	6					
	H(5-6)	16					
			ork diagra	m and identify	the critical path		
				an and identity	ane enticat patir		
	II) FIIId	EST,EFT,LS	1,671				

Q 4	Answer 3 out of 5	15 M	
	A] Testing of Hypothesis		CO 1
	B] Time Estimate of Network Analysis		CO 2
	C] Transportation Problem		CO 3
	D] Job Sequencing Problem		CO 4
	E] Estimator and Estimate		CO 4

April 2025
Examination: In Semester -_II__ Examination (UG programmes)

Programme code: Programme: FYBSC

Name of the Constituent College:

S K Somaiya College (SKSC)

Name of the

department/Section/Center:

Economics

Duration:

Microeconomics

Max. Marks: 60

Instructions: 1) Draw neat diagrams 2) Assume suitable data if necessary

Section		Max. Marks	CO
Q1. A.	Explain the equilibrium of a firm in the short run and long run	7	CO 1
В.	under perfect competition? What are the features of monopolistic competition. OR	8	CO 1
C.	Explain the price and output determination of the firm under monopolistic competition.	7	CO 1
D.	What are the characteristics of Oligopoly market?	8	CO 1
Q2. A.	Explain how technological advancements can affect the derived demand for labor in a given industry?	7	CO 2
В.	What is the difference between average productivity and marginal productivity of labor?	8	CO 2
	OR What are the possible efficiency and welfare implications of a	7	CO 2
C.	bilateral monopoly? How can government intervention, such as a minimum wage,	8	CO 2
D.	address issues related to monopsony power?		
Q3. A.	Examine the Edgeworth production box and general	7	CO 3
В.	equilibrium of production. What are public goods? What limits the possibility of private supply.	8	CO 3
	OR		
C	How do credit markets address adverse selection issues when	7	CO 3
D	lending to borrowers? How does adverse selection affect the insurance industry?	8	003
Q4. A.	Conceptual Questions: (Any three)	15	CO 4
1.	Deadweight loss		
2.	Types of oligopoly		
3.	Obstacles of consumption in public goods.		
4.	Reasons for market failure.		
5.	Agency problem		