

Dr. Shantilal K. Somaiya School of Commerce and Business Studies

QUESTION PAPERS

BRANCH: Bachelor of Business Administration	SEM: II
	MAR/APR-2023

Sr. No.	Subject	Available
1.	131U07C201 – Quantitative Techniques II (A)	
2.	131U07C201 – Quantitative Techniques II (B)	
3.	131U07C201 – Quantitative Techniques II (C)	
4.		
5.		
6.		
7.		
8.		
9.		
10.		

LIBRARY

Semester (November 2022 to March 2023)

Examination: End Semester Examination March/April 2023 (UG Programmes)

Programme code:7
Programme: BBA

Name of the Constituent College: S K Somaiya College

Name of the Department: Business Studies

Course Code:131U07C201

Name of the Course: Quantitative Techniques-II

Duration: 2 Hrs.

Maximum Marks: 60

Instructions: 1) Use of calculator is allowed 2) Assume suitable data if necessary

Q. No.			Max. Marks	CO Attainment
Q.1. A	A)	i) Shriniketan Co-op Hsg. Society has 8 members and collects Rs. 2500	4	CO3
A VA CO CREGO HARAS		as maintenance charges from every member per year. The rate of		
		compound interest is 8% p.a. If after 4 years the society needs to do a		
		work worth Rs. 100000, are the annual charges enough to bear the		
		cost?		9
		ii) The S.I. on a sum of money is one-fourth the principal. If the period is same as that of the rate of interest then find the rate of interest.	3	CO3
Q.1.	B)	Find the compound amount and compound interest of Rs. 10000 invested for 5 years at 5% if the interest is compounded (i) annually, (ii) semiannually, (iii) quarterly and (iv) monthly	8	CO3
		OR		
Q.1.	C)	Mr. Prabhakar Naik has borrowed a sum of Rs. 60,000 from a person at 6% p.a. and is due to return it back in 4 monthly installments. Find the EMI he has to pay and also prepare the amortization table of repayment.	7	CO3
Q.1.	D)	There are 2 families A and B. There are 4 men, 6 women and 2 children in a Family A and 2 men, 2 women and 4 children in Family B. The recommended requirement of calories in Man:2400, Woman: 1900, Child:1800 and for proteins in Man:55gm, Woman:45gm and Choild:33gm. Represent the above information by matrices in using matrix multiplication method.		CO3
Q.2.	A)	Solve the equations using Cramer's Rule $5x+3y-2z=6$ $3x+3y-4z=2$ $8x+2y-3z=7$	7	CO1
	B)	Using elementary row transformations, find inverse of A. Where	0	001
	2)	$A = \begin{bmatrix} 1 & 2 & 5 \\ 1 & 3 & 5 \\ 1 & 5 & 12 \end{bmatrix}$	8	CO1
		OR		
Q.2.	C)	Express equations $x+y+z=9$, $2x+3y-z=9$ and $3x-y-z=-1$ in the matrix form AX=B. Solve the equations.	7	CO1
	D)	Differentiate the following functions		001
		i) $ x^3 - 2x^2 + 1 $	1	CO1
			4	
		$3x^2 + 4$ ii) $\frac{x^3 - 2e^x}{4x^3 + 8^x}$	4	

Q.3.	A)	Examine for maxima and minima using Sufficient conditions the function $f(x) = 2x^3 - 9x^2 - 24x + 11$							7	CO2
	B)	Find th	e 6 th term	of the sequen	ce 6,11,18,	27,38 1	using forv	vard difference	8	CO2
		table.								002
0.0	(C)	OR								
Q.3	(C)			gree polynomia 1,7), (2,13) and		curve	y=f(x) pas	ssing through	7	CO2
	D)	Prove tl	nat:							CO1
		i) f(a	(n+2h)=	$f(a) + 2\Delta f(a)$	$+\Delta^2 f(a)$				4	
		ii) Δ ⁴ 2	ii) $\Delta^4 y_0 = y_4 - 4y_3 + 6y_2 - 4y_1 + y_0$							
Q.4		Attempt the following questions.								
	A)	Find Technology matrix for the following input-output table.								CO3
3000 13 MARCH		Industr		sumption by	Final D					
			X	Y						
		X	80	60	120					
		Y	40	70	150					
	B)	A manufacturer makes toys for which the demand function is p=100-3x, where p is the price and x is no. of units. The total cost includes Rs.200 as							5	CO3
		a fixed cost and a variable cost of Rs.50 per unit of x. Obtain Revenue, Cost and Profit functions. Also find the value of x, the no. of units at which there will be no profit no loss.								
	C)	Constru	ct Backy		e table fo	or the	followin	g. Also find	5	CO2
		X	0	1	2		3	4		
		f(x)	3	-3	3		-3	3		

Semester (November 2022 to March 2023)

Examination: End Semester Examination March/April 2023 (UG Programmes)

Programme code: 7

Programme: BBA

Name of the Constituent College: S K Somaiya College

Name of the Department: Business Studies

Course Code: 131U07C201 Name of the Course: Quantitative Techniques-II

Duration: 2 Hrs. Maximum Marks: 60

Instructions: 1) Use of calculator is allowed 2) Assume suitable data if necessary

Q.				Max.	CO
No.				Marks	Attainment
Q.1.	A)	i)	Find the principal which will amount to Rs. 11,236 in 2 years at 6% compound interest compounded annually.	4	CO3
•		ii)	Mr. Ravi invested Rs. 5000 in an annuity with quarterly payments for a period of 2 years at the rate of interest of 10%. Find the accumulated value of the annuity at the end of 2nd year.	3	CO3
	B)	for	of the compound amount and compound interest of Rs. 500 invested 5 years at 5% if the interest is compounded (i) annually, (ii) niannually, (iii) quarterly and (iv) monthly	8	CO3
Q.1.	(C)	i)	OR	ee Chara	
Q.1.	C)	1)	Find the rate of interest at which a sum of Rs. 2000 amounts to Rs. 2690 in 3 years given that the interest is compounded half yearly. (Given= $\sqrt[6]{1.345}$ = 1.05)	4	CO3
		ii)	Find the future value after 2 years of an immediate annuity of Rs. 5000, the rate of interest being 6% p.a compounded annually.	3	CO3
	D)	i)	Take suitable example and show that multiplication of matrices is distributive with respect to addition of matrices.	4	CO1
		ii)	Show that matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ satisfies the equation $A^2 - 5A - 2I = 0$	4	CO1
Q.2	A)	Sol	ve the equations by Cramer's rule		
	/	2x-	y+z=4 3y+2z=12	7	CO1
		3x+	-2y+3Z=16		Apr.
	B)	Usi:	ng elementary column transformation, find inverse of A, Where [1 3 3]	8	CO1
			OR Special Company of the Company of		
			A Light of the Country of the Countr		

Q.2.	C)	C) Examine for maxima and minima using Sufficient conditions the function $y = x^3 - 3x^2 - 45x + 25$							7	CO3
	D)	i)	The De	4	CO3					
		ii)		Linear Fu		Exponential I	Function, Supp	ly function,	4	CO3
Q.3	A)	Fin	d deriva	tive $y = \frac{1}{1}$	+xlogx				7	CO2
	B)						ruit in lakhs to n the year 200		8	CO2
		Y	ear	2006		2008	2010	2012		
		Ex	ports	57		59	63	68		
						OR				
Q.3.	C)	Estimate f(3.6) using Newton's Interpolation formula, from the following data x 0 1 2 3 4						7	CO2	
		f(z	(x) 2 2	6 20	50					
	D)	i) Prove that: $\Delta^4 f(x) = f(x+4h) - 4f(x+3h) + 6f(x+2h) - 4f(x+h) + f(x)$							4	CO2
		ii) Prove that: $f(3h) = f(0) + 3\Delta f(0) + 3\Delta^2 f(0) + \Delta^3 f(0)$							4	CO2
Q.4		Answer the following questions.								,
Υ.Τ	A)	_					nput-output tal	nle.	5	CO1
	11)		dustry	Consump		Final Deman		oie.	3	COI
		A		A 50	B 20	50				
	D:	В		35	40	70				
	B)	A company manufactures notebooks. The weekly total cost function is given by C=15x+3000. If each notebook is sold at Rs.25, What is the minimum quantity that needs to be produced to ensure no loss? Also, If selling price of a notebook is increased by 20%, What would be the minimum quantity that needs to be produced and sold to ensure no loss?						5	CO1	
	C)	Def						, Effective Rate	5	CO1

Semester (November 2022 to March 2023)

Examination: End Semester Examination March/April 2023 (UG Programmes)

Programme code: 7

Programme: BBA

Class: FY

Semester: II

Name of the Constituent College: S K Somaiya College

Name of the Department: Business Studies

Course Code: 131U07C201

Name of the Course: Quantitative Techniques-II

Duration: 2 Hrs.

Maximum Marks: 60

Instructions: 1) Use of calculator is allowed 2) Assume suitable data if necessary

Q. No.								Max.	CO
Q.1	(A)	i)	Mr Akack	lent Do	5000 to	M. D. 1	D 4000	Marks	Attainment
Q.1	11)	1)	Sagar for	5 vears	and receive	Mr. Prashant and	Rs. 4000 to Mr.	4	CO3
			Find (i) the	rate of i	nterest and	(ii) simple interes	erest of Rs. 4950.		
		ii)	Find the at	mount for	r an ordina	(11) Simple interes	eriodic payment of		
		11)	Rs. 3000 a	ot 9% n a	compound	led semi-annually	for 4	3	CO3
	B)	Find	the compos	ind amou	nt and com	anound interest of	Rs. 1200 invested	0	GOA
		for	5 years at	5% if t	he interest	is compounded	(i) annually, (ii)	8	CO3
		semi	annually, (ii	i) quarter	ly and (iv)	monthly	(1) allitually, (11)		
			57(7 1	0				
Q.1	C)	Mr.	Shyam Rane	has born			rom a bank at 12%	7	CO1
		p.a.	and is due to	return it	t back in 5	monthly installme	ents. Find the EMI	,	CO1
		he h	as to pay and						
	D)	i)	If $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	4 3]			Topay mont.	4	CO1
			- Contract						COI
			$B = \begin{bmatrix} 2 & 1 \\ 1 & 3 \\ 0 & 5 \end{bmatrix}$	4					
			0 5	6					
			Find produ	ct matrix	A×B, can	you find B×A?			
		ii)	Evaluate					4	CO1
			0	b - c					CO1
			$A = \begin{bmatrix} 0 \\ -b \end{bmatrix}$	$\begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix}$					
			1.0	u UI					
Q.2	A)		Find Invers	se of Mati	ix A by ad	joint method			001
			[1 4 0	1	and the of the	joint method		7	CO1
			$\begin{bmatrix} 1 & 4 & 0 \\ -1 & 2 & 2 \end{bmatrix}$						
	B)		For the fe	11 :	. 1				
	В)		motrise A	llowing	two indust	ry output model,	find technology	8	CO1
			anah mada	Also calc	culate the I	evel of output, if	final demand of		
			requiremen	t for this	ases by 6	0 units. Further	find the labour		
			Industry			D' 1D 1			
			mustry	1	nption by	Final Demand	Total Output		
			1	120	120	150	100	rinn (Transition of the state of the
			2	120	130	150	400	Sanzing School o	merce & R.
			Labour		180	200	500	Libra Libra	lry Sta
			Labour	80	200			=	de la

		OR		4	
Q.2.	C)	By dividing 50 into two parts so that their product is maximum, use maxima and minima in derivatives.	7	CO2	
	D)	i) If $y = x^3 - 6x^2 + 19x + 100$ find $\frac{d^2y}{dx^2}$	4	CO2	
		ii) Find derivative $y = \frac{10e^x + 5logx}{x^3 + 12}$	4	CO2	
Q.3.	A)	The cost of producing X item is given by $2x^2 + 5x + 20$. find the total	7	CO2	-
	B)	cost, average cost and marginal cost when $x=10$ If $f(x) = 2x^2 - 3x + 1$, find the values of $f(x)$ for $x=0,1,2,3,4$. Prepare	8	CO2	-
		the forward difference table and show that Second forward differences are constant.	0	002	
		OR			
Q.3.	A)	Construct a difference table for $f(x) = 5x^2$, $x = 0(1)4$. Hence find f (1.5) using Newton's Forward Difference Formula.	7	CO2	
	B)	Prove that:			-
		i) $f(a+2h) = f(a) + 2\Delta f(a) + \Delta^2 f(a)$	4	CO2	-(
		ii) $\Delta^4 y_0 = y_4 - 4y_3 + 6y_2 - 4y_1 + y_0$	4	CO2	
Q.4	Ans	wer the following questions.			
	A)	Define	5	CO2	
	i)	Lower Triangular Matrix			
	ii)	Upper Triangular Matrix			
-	iii)	Transpose of Matrix			
	iv)	Symmetric Matrix Diagonal Matrix			_
	(v) (B)	Show that if rows and columns of a determinant are interchanged, its	5	CO2	
		value remains the same.			
	C)	Construct Backward difference table for the following. Also find $\nabla f(4)$, $\nabla^2 f(4)$, $\nabla^3 f(4)$ and $\nabla^4 f(4)$	5	CO2	
		x 0 1 2 3 4			1